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Abstract
For the first time the differential cross sections of the elastic scattering of slow
electrons from argon atoms are calculated in a relativistic multiconfiguration
method. The correlation effects responsible for target polarization are treated
in a relativistic configuration–interaction scheme that allows for dynamical
effects. Calculations of the differential cross sections and spin polarization are
discussed and compared with experimental and other theoretical data.

1. Introduction

In the past few years, the scattering of slow electrons by atoms has been extensively studied
by both experimentalists and theoreticians. From the theoretical point of view, the difficulties
arise from the need of precise calculations of target polarization. Present calculations are
performed by using the relativistic version of the multiconfiguration and configuration–
interaction (CI) approach applied to elastic electron scattering on atoms. This approach
was originally developed by Sienkiewicz et al (1995), Sienkiewicz and Baylis (1997) and Syty
(2003). The method allows for describing the polarization of different target states due to
the incoming electron charge through bound relativistic configuration expansions. The target
polarization is different for different kinetic energies of the incident electron, and thus dynamic
effects are taken into account. The relativistic phase shifts obtained by this method are used
to calculate differential cross sections and spin polarization of electron scattering by argon in
its ground state at a few selected energies.

In this paper, for the first time the relativistic configuration–interaction method is applied
to calculate the differential cross sections on elastic scattering of electrons from atomic target.
Argon was chosen as a model example since it was extensively studied experimentally as well
as theoretically. Although argon is a relatively light atom, the relativistic effects in electron
scattering can be estimated (Walker 1971, Sienkiewicz and Baylis 1987).

The very first experimental measurements of differential cross sections in the scattering
of slow electrons from argon atoms were performed by Ramsauer and Kollath (1929, 1932),
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Hughes and McMillen (1932) and Webb (1935). Since 1970, the measurements were
performed in wide range of angles by Dehmel et al (1976), Srivastava et al (1981), Furst et al
(1989), Gibson et al (1996) and Panajotović et al (1997). Spin polarization measurements at
low scattering energies were performed by Beerlage et al (1981).

There were many various theoretical methods used to obtain differential cross sections in
scattering of electrons from argon atoms, i.e. Amusia et al (1982) used many-body perturbation
theory, Fon et al (1983) and Bell et al (1984) used R-matrix method, McEachran and Stauffer
(1983, 1997) and Dasgupta and Bhatia (1985) utilized polarized orbitals method. Nahar and
Wadehra (1987, 1991), Sienkiewicz and Baylis (1987) and Plenkiewicz et al (1988) used
model polarization potentials. Saha (1991) based on the multiconfiguration Hartree–Fock
method. Relativistic Dirac–Fock method, in connection with model polarization potentials
was used by Sienkiewicz et al (2001).

When compared to the other theoretical methods, the relativistic multiconfiguration
method, which is used in our calculations, is more accurate in taking into account the dynamical
core polarization and the electron–correlation effects, by using an ab initio approach. As these
effects are very important in describing atomic target, we expect that our new approach should
result in a better conformity with experimental data than the results obtained using other
theoretical methods.

A review of the theory used in computations is presented in section 2 and the computational
procedure is described in section 3. Our results are presented and compared with experiment
and other available calculations in section 4. Finally, the concluding remarks are included in
section 5.

2. Theory

Let us start from the relativistic scattering equation

HN+1� = E�, (1)

where HN+1 is the (N + 1)-electron Dirac–Coulomb Hamiltonian operator,

HN+1 =
N+1∑
i=1

[
c
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k=1

αi
kp

i
k + (βi − 1)c2 − Z

ri

]
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i=1
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1

rij

, (2)

and � is the scattering state wavefunction including one electron in the continuum. In
equation (2), c is the speed of light, α and β are the usual Dirac matrices, pk is the component
of an electron momentum, Z is the atomic number, ri is the position of the ith electron, and
finally, rij is the distance between ith and j th electron.

The total energy of the scattering system is

E = Ea + E, (3)

where Ea is the energy of the N-electron target, and E is the kinetic energy of the scattered
electron.

To obtain the approximate solution of our scattering equation (1), we use the
multiconfiguration Dirac–Fock method. In this method, an atomic state function (ASF) is
approximated by a linear combination of configuration state functions (CSFs),

�a(PaJaMa) =
nc∑

r=1

barφr(N, γrJaMaPa), (4)

where Pa is the parity of the atomic state, Ja is the total angular momentum, Ma the magnetic
number, and nc is the number of CSFs. The CSFs are eigenfunctions of the parity and the



Scattering of electrons from argon atoms 2861

total angular momentum operators and are associated with the set of the quantum numbers
(PaJaMa). They are built from antisymmetrized products of a common set of orthonormal
Dirac orbitals

unκm(r) = 1

r

(
Pnκ(r)χκm(r/r)

iQnκ(r)χ−κm(r/r)

)
, (5)

where Pnk and Qnk are the large and small components of the Dirac radial spinor, respectively,
and the spin-angular function is given by

χκm(r/r) =
∑

σ=±1/2

〈
jm

∣∣∣∣ l, 1

2
,m − σ, σ

〉
Ym−σ

l (r/r)χσ
1/2, (6)

where
〈
jm

∣∣ l, 1
2 ,m−σ, σ

〉
is a Clebsch–Gordan coefficient, Ym−σ

l (r/r) is a spherical harmonic,
χσ

1/2 is the spin eigenfunction, κ is the relativistic angular quantum number, κ = ±(j + 1/2)

for l = j ± 1/2, where j is the total angular momentum, l and m are the orbital and magnetic
quantum numbers, respectively.

The symbol γr in equation (4) denotes the occupation and the coupling of the electron
subshells, and thus allows us to distinguish CSFs of the same global symmetry. The radial
parts of the functions φr(N, γrJaMaPa) as well as the mixing coefficients bar are generated
in the self-consistent field (SCF) process with respect to the Dirac–Coulomb Hamiltonian.

We express the total wavefunction of the (N + 1)-electron scattering system in the form
(Burke et al 1971)

�(PJM;N + 1) = A
ma∑
a=1

ca�a(PaJaMa;N)uκ(a)m(a) +
md∑
j=1

djφj (PJM;N + 1). (7)

The first term on the right-hand side of equation (7) is the antisymmetrized product of the
bound configuration states of the target atom and one-electron continuum spinors uκ(a)m(a).

The continuum Dirac spinor is defined as

uκm(r) = 1

r

(
Pκ(r)χκm(r/r)

iQκ(r)χ−κm(r/r)

)
, (8)

where Pk and Qk now refer to continuum orbitals.
The continuum orbitals are the solutions of the Dirac–Fock equations:
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, (10)

where c is the speed of light, and E is the kinetic energy of the scattered electron. Direct and
exchange potentials, V (r) and X(r), are given by Grant et al (1980). These equations are
solved by the method of outward integration.

The first sum in equation (7) ranges over all ma open channels �a . In the case of elastic
scattering, we have only one open channel, thus ma = 1.

The second sum in expansion (7) accounts for correlation effects between the scattered
electron and the bound target electrons. In our approach, the (N + 1)-electron configuration
state functions φj are constructed from bound-state orbitals of the target atoms, including
excitations of some of the core electrons into a set of virtual orbitals.
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In the case of elastic scattering, we obtain the coefficients dj by solving the system of md

linear equations (Saha 1991):

〈A�uκm|HN+1 − E|φj ′ 〉 +
md∑
j=1

d∗
j 〈φj |HN+1 − E|φj ′ 〉 = 0, j ′ = 1, . . . , md. (11)

This set of equations is derived by applying the condition that the functional 〈�|HN+1 −
E|�〉 must be stationary with respect to variations of the dj coefficients.

The solution of equations (11) determines new direct and exchange potentials and, through
the Dirac–Fock equations (10), an improved continuum scattering orbital. This, in turn, can
be used in a new calculation of coefficients dj . The procedure is iterated to self-consistency.

Now let us define two complex scattering amplitudes f (ϑ) (the direct amplitude) and
g(ϑ) (the ‘spin-flip’ amplitude), according to Kessler (1985, p 35):
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where ϑ is the scattering angle, Pl(cos ϑ) and P 1
l (cos ϑ) are the Legendre polynomial and the

Legendre associated function, respectively. The δ±
l are the relativistic phase shifts, where the

index ‘+’ refers to the solution with κ = −l − 1 and ‘−’ refers to the solution with κ = l.
Having the scattering amplitudes, we can calculate the set of observables—the differential

cross section

σ(ϑ) = |f (ϑ)|2 + |g(ϑ)|2, (14)

and the spin polarization parameters

S(ϑ) = i(f (ϑ)g(ϑ)∗ − f (ϑ)∗g(ϑ))

σ (ϑ)
(15)

T (ϑ) = |f (ϑ)|2 − |g(ϑ)|2
σ(ϑ)

(16)

U(ϑ) = f (ϑ)g(ϑ)∗ + f (ϑ)∗g(ϑ)

σ (ϑ)
. (17)

These parameters are not independent, since S + T + U = 1. In our work, we calculate and
present only the spin polarization parameter given by equation (15).

3. Computational procedure

To represent the atomic ground state (equation (4)) of the argon atom, we include 9022
relativistic configuration state functions (CSFs) with the total angular momentum 0 and even
parity. These configuration states are obtained by the excitations of one or two electrons
from the 3s and 3p subshells into the set of virtual orbitals 3l 4l 5d 6s 6p 6d 7s 7p 8s 8p 9s 10s.
In order to obtain a full Dirac–Coulomb–Breit matrix, the contribution from the relativistic
(transverse) Breit interaction between electrons has been added to the Hamiltonian matrix as
a perturbation.

The atomic ground-state function and the set of configuration state functions are generated
with the atomic structure program GRASP92 written by Parpia et al (1996).



Scattering of electrons from argon atoms 2863

Figure 1. Differential cross section and spin polarization for elastic scattering of electrons from
argon atoms, 2 eV. Solid line: present results; dashed line: theoretical results of McEachran and
Stauffer (1997); dotted line: theoretical results of Sienkiewicz and Baylis (1987); full squares:
experimental results of Gibson et al (1996).

To construct the total scattering state � and to generate the continuum orbitals uκm, we
use the computer code COWF developed by Fritzsche (2001). The original COWF code has
been improved and modified to run on multiprocessor computers (Dziedzic et al 2005). The
continuum orbitals are orthogonalized to the atomic orbitals by the Schmidt orthogonalization
procedure.

The dominant contribution to the total dipole polarization comes from the polarization of
the 3s and 3p orbitals. In our calculations, we include the dipole polarization of the target
argon atom through the configuration–interaction procedure. The bound (N + 1)-electron
configuration state functions φj (equation (7)), that account for the dipole polarization, are
built of atomic orbitals 1s, 2p, . . . up to 6d, obtained by the relativistic multiconfiguration
self-consistent field method. We generate these configurations by the virtual excitations form
the subshell 3s into the 3p 4p 5p 6p subshells and from the 3p subshells into the orbitals
3s 3d 4s 4d 5s 5d 6s 6d.
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Figure 2. Differential cross section and spin polarization for elastic scattering of electrons from
argon atoms, 3 eV. Solid line: present results; dashed line: theoretical results of McEachran and
Stauffer (1983); dotted line: theoretical results of Saha (1996); full squares: experimental results
of Gibson et al (1996); open circles: experimental results of Williams (1979); short-dashed line
(lower graph): theoretical results of Nahar and Wadehra (1991).

The continuum orbitals and expansion coefficients dj are determined by iteration
procedure leading to self-consistency by the use of methods and computer code developed by
Sienkiewicz et al (1995), Sienkiewicz and Baylis (1997) and Syty (2003).

Relativistic phase shifts δ±
l are obtained by comparing the numerical solutions of

continuum orbitals with the asymptotic ones at large r:

Pκ(r)

r
∼ jl(kr) cos δ±

l − nl(kr) sin δ±
l , (18)

where jl(kr) and nl(kr) are the Bessel and Neumman spherical functions, respectively.
We calculate the relativistic phase shifts δ±

l for l = 0, 1, . . . , 10. For higher values of
the orbital momentum (up to l = 50), we estimate phase shifts by using the non-relativistic
formula of Ali and Fraser (1977).
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Figure 3. Differential cross section and spin polarization for elastic scattering of electrons from
argon atoms, 5 eV. Solid line: present results; dashed line: theoretical results of Saha (1991);
dotted line: theoretical results of Dasgupta and Bhatia (1985); dash-dotted line: theoretical results
of Fon et al (1983); short-dashed line: theoretical results of McEachran et al (1997); short-dotted
line: theoretical results of Gibson et al (1996); circles: experimental results of Srivastava et al
(1981); triangles: experimental results of Gibson et al (1996); squares: experimental results of
Mielewska (2003); rhombus: experimental results of Furst et al (1989); short-dashed line (lower
graph): theoretical results of Nahar and Wadehra (1991).

4. Results

In figures 1–5, differential cross sections (14) and spin polarizations (15), for a few
selected impact electron energies, are presented and compared with existing experimental
and theoretical data.

Figure 1 shows our results at impact energy of 2 eV. In the case of differential cross section,
we compare our results with the experimental data of Gibson et al (1996) and theoretical studies
by Sienkiewicz and Baylis (1987) who used model polarization potential in their calculations,
and McEachran and Stauffer (1997) who used polarized orbitals method. For spin polarization,
at this particular energy, no comparison data are available till now. As one can see, for angles
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Figure 4. Differential cross section and spin polarization for elastic scattering of electrons from
argon atoms, 7.5 eV. Solid line: present results; dashed line: theoretical results of Saha (1991);
full squares: experimental results of Gibson et al (1996); full circles: experimental results of
Mielewska (2003); open triangles: experimental results of Srivastava et al (1981).

in the ranges of 20◦–60◦ and 80◦–130◦, present results (as former ones) stay in a rather good
agreement with experiment. For angles 60◦–80◦ all theoretical lines lie above the experimental
points, however, our line is closest to these points. For angles above 150◦, our line is somewhat
below the other theoretical lines, but no experimental data are yet available to verify which
line is better.

Next, we present our results at an energy of 3 eV (figure 2). Here, our results are compared
with the experimental results of Gibson et al (1996) and Williams (1979) together with
theoretical lines given by Saha (1996) who used multiconfiguration Hartree–Fock method, and
McEachran and Stauffer (1983), who used polarized-orbital approximation. Spin polarization
is compared to the theoretical study by Nadar and Wadehra (1991). In this case, our results
are very close to results given by Saha for low and middle angles. Both lines stay in a good
agreement with both experimental data sets. For big angles, present results are two times
bigger than Saha’s results, but thanks to this fact, they stay in a better agreement with the
results of Williams. Two spin polarization lines are very similar, the only difference is the
depth of the minima.
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Figure 5. Differential cross section and spin polarization for elastic scattering of electrons from
argon atoms, 10 eV. Solid line: present results; dotted line (upper graph): theoretical results of
McEachran and Stauffer (1983); dashed line: theoretical results of Plenkiewicz et al (1988); full
circles: experimental results of Mielewska (2003); open triangles: experimental results of Furst
et al (1989); dotted line (lower graph): theoretical results of Nahar and Wadehra (1991); full
squares: experimental results of Beerlage et al (1981).

The next three cases (for 5, 7.5 and 10 eV, figures 3–5) are very interesting, because
experimental results are available for differential cross sections in scattering at the big angles
(Mielewska 2003). We also present the experimental data of Srivastava et al (1981), Gibson
et al (1996) and Furst et al (1989). Besides the present results obtained in relativistic
multiconfiguration manner, for comparison, we also include the theoretical results of Saha
(1991), Dasgupta and Bhatia (1985), Fon et al (1983), McEachran and Stauffer (1983, 1997),
Gibson et al (1996) and Plenkiewicz et al (1988). Here, for angles up to 140◦, all theoretical
results stay in rather good agreement with experiment, but differences grow dramatically
for bigger angles. It concerns also the present results, but let us note here that the presented
results are closest to the experimental points given by Mielewska, however. It is clearly seen in
figure 4 (for 7.5 eV) that our line deviates from these points only for angles above 160◦. For
energy of 10 eV, our line is more steep than the experimental results at the big angles, but
perfectly fits to the results of Furst et al (1989).
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For spin polarization at these energies, we observe good agreement of our results compared
to the theoretical results of Nahar and Wadehra (1991). To our knowledge, for energy of
10 eV the only available experimental data are of Beerlage et al (1981), and are included in
figure 5. The disagreement between the experimental points of Beerlage and our results can
be explained by quite substantial experimental errors (see figure 5).

5. Conclusions

For the first time, relativistic multiconfiguration calculations of differential cross sections have
been performed for the elastic scattering of slow electrons by atomic target. We show that
our results in the case of argon stay in a good agreement with existing experimental data for
all presented scattering energies. This fact was expected as the method used in calculations
allows for taking into account dynamic effects in a precise ab initio manner through the
(N + 1)-electron bound configurations. Our method is particularly suitable for heavier atoms,
where relativistic effects play an even more important role.

It is obvious that up to now the scattering experiments are not accurate enough to provide
data for very precise comparison with our theoretical data. Nevertheless, we hope that our
method is a valuable step in developing theoretical methods.

The next step in improving this method should be to take into consideration inelastic
channels. This would require some modifications of the method (in particular, rewriting
the set of equations (11)), but would allow for much broader comparison with available
experimental data.
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