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Computer for which the program is designed and others on which it has been
tested:

Computers: All machines with Fortran 90/95 compiler

Installations: Gdańsk University of Technology (IBM SP/2 and PC Pentium)

Operating systems under which the program has been tested: Linux, IBM AIX,
MS Windows

Program language used: ANSI standard Fortran 90/95; a few numerical li-
braries written in Fortran 77 are also used

Memory required to execute with typical data: 1 – 30 MB (it is strongly depen-
dent on the maximal basis size N used in calculations). Additionally, approx-
imately 20MB of hard disk space is required for the output files.

No. of processors used: 1

Has the code been vectorised or parallelized? no

Distribution format: compressed tar file

No. of bytes in distributed program, including test data, etc.: approx. 200kB
(uncompressed)

Nature of physical problem
Projectile of a given energy is elastically scattered on the radial potential
vanishing faster than the Coulomb one. Our task is to obtain phase shift of
the wavefunction of the scattered projectile. These phase shifts can be used
in calculations of differential cross sections for elastic scattering, and spin
polarization of the projectile.

Method of solution
Physical scattering problem is replaced by well-defined model which is solved
exactly. Radial kinetic operator is tridiagonal in some suitable bases, such as
Gaussian or Laguerre basis set. Scattering potential (vanishing faster than the
Coulomb one) is truncated in N elements of the selected basis. Then, using
some algebraic methods, one can find formula for tangent to the approximate
phase shift, tan δN . We expect that for N → ∞, this approximate value con-
verges to the exact value, tan δ.

Restrictions on the complexity of the problem
In the presented code, the maximum basis size N is limited for these two
reasons: (1) When basis size N approaches value about 500, the convergence
process fails. It seems that this fact is a consequence of loss of preciseness in
numerical integration. (2) For Laguerre basis, maximum value of N is 497,
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due to limitations of the largest number representable in the double precision
variables. For Gaussian basis, there is no such restriction. In future versions
of the program these restrictions will be removed by using more precise and
stable integration procedures and applying some numerical techniques.

Typical running time:
1 – 180 minutes, strongly dependent on basis size N and scheme used in
computations (relativistic or non-relativistic).

Unusual features of the program:
At the end of its execution, program saves calculated elements of truncated
potential to a file. This allows for repetition of calculations for different pro-
jectile energies with a relatively small computational time. It is possible to
create data base of these files for a different parameters for a future use.

LONG WRITE-UP

1 Introduction

The J-matrix method is an algebraic method in quantum scattering theory. It
is based on fact that the radial kinetic energy operator is tridiagonal in some
suitable bases. Non-relativistic version of the method was introduced in 1974
by Heller and Yamani [1], [2] and developed by Yamani and Fishman [3] a
year after. Recently, relativistic version was introduced by Horodecki [4] and
extended by Alhaidari et al [5]. Theoretical basis of the method is described
in section 2.1. Presented program JMATRIX implements both non-relativistic
and relativistic versions of the method. In general, program allows for calcu-
lations of scattering phase shifts in all cases when the scattering potential is
given through the analitycal formulas. However, the main task of the present
work was to perform some calculations for a relatively simple cases, for the
purpose of testing the relativistic version of the method, as it has never been
(numerically) tested before. For a start, we selected the scattering potential
modelled as square-well and a truncated Coulomb potential. Performed test
calculations of scattering phase shifts show, that: (i) numerical phase shifts
converge to results obtained using an analytical formula, as we increase size
of basis used to truncate scattering potential, (ii) non-relativistic limit in rel-
ativistic computations is correctly satisfied.
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2 Theortical method

2.1 The J-matrix method

In this section we give only a short review of the J-matrix theory of scattering,
but it should be sufficient for understanding the main idea of the method.
Detailed description of the method can be found in publications [1] – [6].

Our task is to find an approximate solution of the scattering problem on the
radial potential V = V (r) vanishing faster than the Coulomb one. Let us
replace this scattering potential by a truncated potential operator:

V N = P †
NV PN (1)

with the generalized projection operator

PN =
N−1∑
n=0

∣∣∣φl
n

〉 〈
φl

n

∣∣∣ . (2)

Then, using expansion of the solution of the new problem in the basis {φl
n},

one can find that tangent of approximated phase shift is given by the formula

tan δN = −sl
N−1(k) + gN−1,N−1(E)JN,N−1(k)sl

N(k)

cl
N−1(k) + gN−1,N−1(E)JN,N−1(k)cl

N(k)
, (3)

where sl
n and cl

n are coefficients of sine-like and cosine-like solutions of the
following equation

(
H0 − k2

2

) ∞∑
n=0

ul
nφl

n(λr) = Ωuφ̄
l
n(λr); u = s, c; Ωs = 0; Ωc = − k

2sl
0

.(4)

Here, k ≡
√

2ME
h̄2 is the wave number related to the energy E and mass M

of the projectile. Basis set {φ̄l
n} is biorthonormal to set {φl

n} with respect to

unitary scalar product, i.e.
〈
φ̄l

m|φl
n

〉
= δmn, where δmn is, as usual, Kronecker

delta.

JN,N−1 is an element of the following matrix

Jmn ≡
〈
φl

m

∣∣∣H0 − k2

2

∣∣∣φl
n

〉
≡
〈
φl

m

∣∣∣− 1

2

d2

dr2
+

l(l + 1)

2r2
− k2

2

∣∣∣φl
n

〉
. (5)
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Table 1
Elements of Laguerre and Gaussian basis sets and elements of expansion of sine-like
and cosine-like solutions in these bases.

Laguerre set Gaussian set

φl
n (λr)l+1 exp

(
−λr

2

)
L

(2l+1)
n (λr) (λr)l+1 exp

(
−λ2r2

2

)
L

(l+ 1
2
)

n (λ2r2)

φ̄l
n

n!
λ2Γ(n+2l+2)

1
rφl

n(λr) 2n!
λ2Γ(n+l+ 3

2
)
φl

n(λr)

sl
n

2lΓ(l+1)n!(sin θ)l+1

Γ(n+2l+2) C
(l+1)
n (cos θ)

√
2πn!(−1)n
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2
)

exp
(
−η2

2

)
ηl+1L

(l+ 1
2
)

n (η2)

cl
n

−2lΓ(l+ 1
2
)n!√

πΓ(n+2l+2)(sin θ)l

√
2
π

Γ(l+ 1
2)(−1)nn!

Γ(n+l+ 3
2
)

exp
(
−η2

2

)
η−l

×2F1

(
−n − 2l − 1, n + 1, 1

2 − l; sin2
(

θ
2

))
×1F1

(
−n − l − 1

2 , 1
2 − l; η2

)
sin θ ≡ kλ−1

k2λ−2+ 1
4

; cos θ ≡ k2λ−2− 1
4

k2λ−2+ 1
4

η ≡ k
λ

In some suitable bases, such as Gaussian or Laguerre set, the above matrix
is tridiagonal (and is called Jacobi or J-matrix). This enables us to find co-
efficients sl

n and cl
n, using three-term recursion relation between them and

the J-matrix (see [2] for details). The explicit forms of these coefficients as
well as elements of basis sets are collected in Table 1. In the table, L(α)

n and
C(α)

n are Laguerre and Gegenbauer polynomials, respectively; 2F1 and 1F1 are
hypergeometric functions, λ > 0 is a scaling parameter (λ �= 0.5).

In above formulas, N is the quantity of base functions φl
n used to truncate

scattering potential, gN−1,N−1(E) is a matrix element of the inverse of the

truncated operator P †
N

(
H0 + V N − k2

2

)
PN , restricted to the N -dimensional

space, where it doesn’t vanish. In short, this matrix can be viewed as the
matrix approximating the Green function.

For N → ∞, what is connected with reduction of inaccuracy in approximating
of the scattering potential, tan δN should converge to the exact value tan δ,
and, simultaneously, approximate δN should approach the exact scattering
phase, δ.

In the relativistic case we have very similar formula for tangent of the approx-
imated phase shift:

tan δ̃N = −sl
N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)sl
N(k̃)

cl
N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)cl
N(k̃)

. (6)

Here, we have the same coefficients of the expansion and J-matrix element
as in the non-relativistic case, only taken with the relativistic number k̃ ≡√

(E−Mc2)(E+Mc2)

ch̄
, related to the total energy E = E+Mc2. See [4] for detailed

explanation of the symbol G++
N−1,N−1. As in the non-relativistic case, it can

be viewed as a matrix element of the inverse of some truncated operator,
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but here restricted not to N (as it is in the non-relativistic case), but to the

2N -dimensional space. To complete definitions, ε ≡
√

E−Mc2

E+Mc2
.

2.2 Test case – square well

Here we shall consider spherically symmetric potential V (r) defined by the
square-well with respect to the radial coordinate:

V (r) =




0 for r ∈ (0, a)

V0 for r ∈ [a, b)

0 for r ∈ [b,∞)

.

and is defined by three parameters: (i) depth V0, (ii) left bound a, (iii) right
bound b.

We will consider only the relativistic case, in which the analytical formula for
tangent of the phase shift can be simply found to be

tan δ̃ =
B̃

Ã
(7)

where the numbers A, B (depending on the energy of the projectile, the rel-
ativistic number κ, and parameters of the potential) can be constructed as
coordinates of the following vector


 Ã

B̃


 = N(b)k̃,κM(b)k̃′,κN(a)k̃′,κM(a)k̃,κ


 1

0


 , (8)

where the 2×2 matrices M and N , depending on the position, are defined with
aid of Ricatti-Bessel and Ricatti-Neumann functions jl(r), nl(r) as follows

M(r)k̃,κ =


 jl(kr) −nl(kr)

∓ε(k̃)jl±1(k̃r) ±ε(k̃)nl±1(k̃r)


 , (9)

N(r)k̃,κ =


±ε(k̃)nl±1(k̃r) nl(k̃r)

∓ε(k̃)jl±1(k̃r) jl(k̃r)


 , (10)
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with the relativistic quantum number κ = l (κ = −l − 1) for upper (lower)
sign of indices in the above formula. Here, k̃′ is defined in the same way as
k̃ (defined in previous section), but with shifted energy E ′ = E + V0 + Mc2

instead of E. The number ε in the above matrices is defined in the same way
as in the previous section.

3 Numerical computations

3.1 A general view of the program

We expect that for N → ∞, approximate phase shift δN (or δ̃N in the relativis-
tic case) converges to the exact value δ (or δ̃). Using presented program, one
is able to study this convergence by systematic calculations of phase shifts for
progressively increased basis size N . Moreover, in the case of square-well po-
tential, numerical results obtained in relativistic calculations can be compared
with result obtained using analytical formula (7).

The program computes all required mathematical functions (such as Gegen-
bauer and Laguerre polynomials, hypergeometric functions, Bessel, spheri-
cal Bessel, Neumann and spherical Neumann functions and their derivatives,
gamma function and more) to evaluate basis functions φl

n and coefficients sl
n

and cl
n (see Table 1). Then the program truncates the scattering potential in

selected basis by numerical integration, and forms the matrix approximating
Green function. This matrix is constructed as sum of the matrix of elements of
truncated potential and the elements of the J-matrix. Then program inverses
this matrix approximating Green function by diagonalisation (using some or-
thogonal matrix; in the present code this orthogonal matrix is a matrix of
eigenvectors of the Green matrix) and finally, computes approximate phase
shift for given number N . Also, there has been written an additional proce-
dure to calculate phase shifts using an analytical formula for potentials with
a shape of potential square-well, using relativistic formulas from section 2.2

Greater part of the mathematical procedures and functions used in program
have been written by authors using useful formulas and relations included in
[7] and [8]. Some procedures (for Bessel, Neumann and Gamma functions, for
numerical integration and for searching eigenvalues and eigenvectors of real,
symmetric matrix) have been taken from public Fortran 77 libraries.

In the relativistic case, most of the formulas are written as function of the total
energy of the projectile, E. For user convenience and for unification with the
non-relativistic case, we used a rescaled kinetic energy E in our code, instead
the total energy E. Due to this rescaling, implemented formulas are slightly
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different than written in section 2.1. In the non-relativistic case such rescaling
was not necessary, because in this case all formulas are written as function of
the kinetic energy from the beginning.

Coefficients sl
n and cl

n for N = 1 and N = 2 have been calculated using explicit
formulas (see Table 1), but for N > 2, to avoid numerical instabilities, using
three-term recursion relation (see [2]). In these formulas, factorials and gamma
functions for a big arguments appear. To minimize the numerical errors, these
functions have been replaced by exponents of their logarithms. This move
was possible only in the case of Gaussian basis; in the case of Laguerre basis,
explicit formulas have been used in calculations, so the maximum number of
N is limited to 497 in this case.

In the J-matrix method there are many integrals to be calculated, especially
in the relativistic case. As they are used to truncate the scattering potential
(1), their quantity is N × N in the non-relativistic case, and 2N × 2N in
the relativistic one. Calculation of these integrals has the major contribution
in the computational time of the present code. To minimize their quantity
(and therefore overall time of computations), we applied a few tricks, such
as utilization of the symmetry of the J-matrix and properties of the scatter-
ing potential. Moreover, integrals calculated in each iteration are saved to be
used in the next iterations. The current integration method is the Double
Exponential (DE) Transformation method.

Once the phase shift for given energy and requested values of N have been
calculated, program starts calculations of phase shifts for another projectile
energies (defined in the input file – see section 3.3), with using previously cal-
culated elements of the truncated potential, as they do not depend on energy of
the projectile. Such approach allows for saving great amount of time, because
– as it has been noticed before – calculations of the elements of the trunated
potential are the most time-consuming operations in the present code. Addi-
tionally, these elements are saved to the external file on the hard disk, so it
is possible to use them in next runs of the program, i.e. for calculating phase
shifts for yet another energies of the projectile.

3.2 Structure of the program and compilation

During unpacking provided gzipped tar file, directory jmatrix is created, and
two directiories within it: source, in which all source files are stored, and bin,
into which the executable file, created during compilation, will be moved. For
a clarity, source code has been splitted into several files. In each file there is a
part of the code responsible for a specific task, i.e. procedures included in file
jm specfun.f90 calculates the special functions used in calculations, jm v.f90
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truncates the scattering potential, jm analytic.f90 calculates the analytical
value of phase shift in case of potential square-well, etc. The main procedure is
included in the file jmatrix.f90. There are two special modules in the program:
jm constants.f90 and jm global.f90. In the first one there are defined constants
and types used in program, the second one is the main module which controls
calculations and in which the global variables are defined. Also, short readme
file is provided.

Program is written in ANSI Fortran 90/95 and should be compiled with any
Fortran 90/95 compiler without any problems. Additionally, program uses
some numerical libraries written in Fortran 77, they also should be succesfully
compiled with use of the same F90/95 compiler. In some rare cases it is con-
venient to use separate F90/95 and F77 compilers, i.e. when using VAST/f90
compiler. To make compilation as easy as possible, it is controlled through
the proper makefile. Before compilation, user should modify this makefile by
specifying the executable names of the F77 and F90/F95 compilers, and flags
passed to the compilers, then run the command make from within the direc-
tory source. The executable file jm will be created and moved to directory
../bin. For user’s convenience, we prepared and included a set of makefiles for
various compilers: Portland Group PGI, VAST/f90, Intel Fortran Compiler
and Digital Visual Fortran. These makefiles are also stored in the directory
source.

3.3 Input and output files

All calculations are controlled through the parameters read from the external
file. The name of the input file is of one’s choice, program asks for its name at
start of execution, but the default is jm.inp. The input file should be composed
of a set of lines in the following form:

; comment
keyword = value ;comment

Blank lines, lines beginning with “;” and lines without proper keyword are
ignored. Keywords and values are case sensitive, there is a free choice of their
order in a file. Not all keywords are mandatory, what will be discussed later.
There have to be spaces around the “=” sign and before the “;” sign (except
the case when whole line is a comment). Below is an example of the input
file, in which all of the keywords recognized by the program are included. The
senses of the particular parameters are discussed later, but they can be easily
presumed from their names and included comments.

; PROPERTIES OF THE PROJECTILE

estart = 3.0 ; Projectile energy range

eend = 4.0
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estep = 0.1 ; Step size

l = 1 ; Quantum numbers

kappa = 1

; TYPE OF CALCULATIONS

lambda = 1.0 ; Scaling parameter

basis = laguerre ; Basis set (gauss, laguerre)

scheme = relativistic ; Scheme (relativistic, non-relativistic)

pot_type = well ; Potential type (well, coulomb, other)

v_light = finite ; Velocity of light (finite, infinite)

nstart = 1 ; Initial value of N

nend = 400 ; Final value of N

; OTHER PARAMETERS

screen = .T. ; Display results on screen

shift = .F. ; Shift results to range [0,pi]

; PARAMETERS OF POTENTIAL SQUARE-WELL

v0 = -1.0 ; Depth

a = 0.8 ; Left bound

b = 1.0 ; Right bound

; PARAMETERS OF TRUNCATED COULOMB POTENTIAL V(r) = - z / (r^alpha)

r0 = 1.0 ; Truncating parameter

z = 30.0 ; The z parameter

alpha = 1.0 ; The alpha parameter

Program calculates phase shifts for projectile energies from range [estart,
eend] with step size estep in a single run of the program. Energies are given
in atomic units. Parameters estart and eend are mandatory; estart should
be less or equal than eend (in the latter case phase shift will be calculated
for only one energy of the projectile). When no estep is specified, program
takes estep = (eend − estart)/10. The mass of the projectile is assumed
to be unitary in the present code (what conforms i.e. to electrons), but it
can be easily changed in the source file jm global.f90. Option which will allow
for change mass of the projectile will be added to the future versions of the
program.

Next, orbital quantum number l and quantum number κ, which describe the
projectile have to be specified, while κ = l or κ = −l − 1. To specify these
numbers, keywords l and kappa, respectively, should be used. If no one from
the above dependencies between κ and l is not satisfied, program stops with a
proper message. This restriction does matter only in relativistic calculations,
because κ is not used in the non-relativistic scheme, so the keyword kappa is
ignored in that case.

One can specify scaling parameter lambda. If omitted, the standard value 1.0
will be taken. Changing this parameter should improve the convegence in some
particular cases, but it is recommended to leave this parameter untouched as
its influence has not been investigated in details yet. Moreover, due to some
numerical reasons, it is not allowed to put the value 0.5 for lambda.

J-matrix (5) can be calculated in two different basis sets, Laguerre or Gauss.
This is detemined through keyword basis. It can assume two values, laguerre
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or gauss. Also, scheme of computations (relativistic or non-relativistic)
should be specified. If no keyword scheme is found in the input file, calcula-
tions will be performed using the non-relativistic scheme.

Keyword pot type is responsible for kind of scattering potential used in com-
putations. There are two types of potentials pre-defined in program: square-
well (value: well) and truncated Coulomb potential (value: coulomb). The
parameters of the above potentials should also be specified in input file. If
square-well is selected, the depth v0, left and right bounds (a and b, respec-
tively) are required (all of them in atomic units). The depth of square-well is
normally a negative number. It is allowed to put the positive number for v0,
but in that case it should not be greater than the energy of the projectile.
The Coluomb potential has the form V (r) = −z/rα, so the parameters z and
alpha should be specified. Parameter r0 (in atomic units) specifies at which
r potential will be truncated, so that V (r > r0) = 0.

Moreover, program is able to use whichever scattering potential given in any
analytical form, by using the value other for keyword pot type in the input
file. Requested formula describing the potential should be specified in the ad-
equate place in the module jm v.f90, then the program have to be recompiled.

To verify that the relativistic results converge to the non-relativistic limit
as the speed of light approaches infinity, we introduced additional keyword,
v light. Standard value is finite, it is responsible for the constant and finite
speed of light (137.036 in atomic units). By specifying v light = infinite,
one can get non-relativistic limit in relativistic computations and compare it
with pure non-relativistic calculations. This setting should not be used in real
calculations, it has been added only for testing purposes. Keyword v light is
ignored in non-relativistic scheme of calculations.

Next two parameters, screen and shift are logical-type and are responsible for
displaying (default) or not results on screen and for shifting (or not, which is
default) calculated phase shifts to range [0, π]. At last, the initial (nstart) and
final (nend) values of N should be specified, so calculations will be performed
for N form range [nstart, nend] with step 1. If nstart is omitted, it is taken
as 1. When nstart = nend, calculations will be performed for only this one
value of N . It does not allow for studying the convergence, but it may be useful
in case when one need only to calculate phase shifts for different energies with
use of previously saved elements of truncated potential.

Program creates three output files which contain results of calculations. In the
first file (program asks for its name; the default name is jm.out), calculated
phase shifts as function of the basis size are saved. In the second file, calculated
phase shifts as function of energy of the projectile (for the final value of N) are
saved. The name of this file is automatically choosen to be the same as the first
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file, but with suffix .en. Additionally, the file saved.vn is created. It contains the
elements of the truncated potential and can be utilized, to save computational
time, in separate runs of the program. Program will utilize this file when saved
informations will correspond to the actual set of parameters, i.e. calculations
are performed in the same basis, scheme, with the same quantum numbers
describing the projectile and scaling paremeter, and, of course, for the same
basis size N (so adequate and the same values for nstart and nend should
be put in the input file). When these informations do not conform to current
calculations or the nstart is not equal to nend, the file saved.vn will be deleted
and created for the new set of parameters.

Below is an (shortened) example of the first output file, with phase shifts as
functions of N :

; OUTPUT FROM THE JMATRIX PROGRAM

(...)

; ANALYTICAL RESULT

; delta = 0.158163581281253

;

; NUMERICAL RESULTS: N tan(delta) delta

1 0.0001153729311281 0.0001153729306162

2 0.0016942699360635 0.0016942683149037

3 0.0084487948013789 0.0084485937789887

(...)

13 0.1377207522226093 0.1368598121024684

14 0.1547320896298930 0.1535146646821944

15 0.1751206279063803 0.1733627075052276

(...)

203 0.1623105129055408 0.1609072868221379

204 0.1640488400677350 0.1626005266770787

205 0.1650570056215622 0.1635821130890733

(...)

300 0.1621137854778999 0.1607156031262297

301 0.1615424542908467 0.1601588523320820

302 0.1605951402488267 0.1592354932033918

(...)

398 0.1595807653598821 0.1582464653476224

399 0.1597952178393117 0.1584555852164212

400 0.1599136302723107 0.1585710471988183

Below is an (shortened) example of the second output file, with phase shifts
as functions of energy of the projectile:

; OUTPUT FROM THE JMATRIX PROGRAM

(...)

; NUMERICAL RESULTS: energy tan(delta) delta

3.000000 0.1599136771879867 0.1585710929446643

3.100000 0.1596260888605002 0.1582906629904541

3.200000 0.1611806782827603 0.1598062570466153

3.300000 0.1607058305437033 0.1593433986129410

3.400000 0.1603631246415301 0.1590093028032292

3.500000 0.1611399619369947 0.1597665714411470

3.600000 0.1597165659930660 0.1583788907618623

3.700000 0.1586909568144603 0.1573786340075637

3.800000 0.1588798233241868 0.1575628557703182

3.900000 0.1573651299127394 0.1560851102673489

4.000000 0.1551291838287373 0.1539024506549712
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3.4 Test case – Results and discussion

We performed some test calculations of phase shifts in scattering on the square-
well potential, using the relativistic scheme of computations, in both bases,
Laguerre and Gauss. We present a few figures ilustrating convergence of the
calculated phase shift to the value obtained using analytical formulas. In Fig-
ure 1 results obtained using Laguerre basis functions are presented. As we
can see, the convergence in this basis is rather slow but systematic. Results
obtained using Gaussian basis functions are presented in Figure 2. In this case
we have much faster convergence. One can notice that the convergence in La-
guerre basis set has completely different nature if compared to convergence in
Gaussian set. The convergence in Laguerre set appears to be more stable and
regular, but is slower. In Gaussian basis, we have rather a quick convergence,
but the numerical results “jump” around the analytical result.

Fig. 1. Convergence of the phase shift versus number of Laguerre basis function N
used to truncate the scattering potential. Straight line – analytical result.

In general, in both investigated cases it is not difficult to see that phase shifts
computed numerically converge to phase shift obtained using an analytical
formula. This is clearly shown in Figure 3, where root-mean-square deviations
of numerical values from the analytical one are presented.

Now let us see that the non-relativistic limit in relativistic calculations is
properly achieved. It is illustrated in Table 2. One can see, that relativistic
calculations performed with substituded infinite speed of light instead of finite,
give result very close to that one obtained from non-relativistic calculations.
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Fig. 2. Convergence of the phase shift versus number of Gaussian basis function N
used to truncate the scattering potential. Straight line – analytical result.

Fig. 3. Root-mean-square error, averaging 20 points backwards and 20 forwards.

4 Conclusions

In last few years the interest of the J-matrix method is significantly increased,
mainly due to relativistic extension of the method. We proposed a program
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Table 2
Illustration of the non-relativistic limit in relativistic calculations.

scheme speed of light δN=100

relativistic finite 0.1545573335662396

relativistic infinite 0.1545390923421738

non-relativistic — 0.1545390774387093

for scattering phase shifts calculations using the J-matrix method, both rela-
tivistic as well as non-relativstic versions. It allows for applying any scattering
potential vanishing faster than the Coulomb one and given in analytical form.
An example of scattering on the potential in shape of square-well has been
presented. In this case, results of numerical computations agree with analytical
results. Moreover, non-relativistic limit is properly achieved.
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