During the last 20 years, the physics of dilute gases has seermajor advances in two fields: laser cooling of
atomic and molecular samples and femtosecond chemistry. |lhoth cases, a strong motivation is to use laser

light in order to achieve a better control of the system by redicing the energy distribution of the various degrees ! ' ' ' jp— Re['s(t)] ' ' ' N Re['S(t)]
of freedom. In this context, two fundamental processes, i.ephotoassociation and photodissociation, or in other —— Im[S(t)] | - —Im[S()]| 1
words formation and breaking of the chemical bond, have motwrated a lot of theoretical and experimental stud-

ies. Photodissociation of diatomic and small polyatomic mecules is an ideal field for investigating molecular

dynamics at a high level of precision [1]. In this poster we pesent the exemplary theoretical description of the

photodissociation process. In Figure 1 we show the scheme difect photodissociation using previously calcu- 2,5
lated adiabatic potential energy curves of the lithium dime [2]. The initial 1°%; state and final 1311, state were

performed by means of the MOLPRO [3] program package.
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Figure 3. Autocorrelation functions in the considered phobdissociation process.

Figure 1. The single UV photon direct photodissociation soakme. The photon creates a single quantum state in 0,5 - N

the upper electronic state. L \ d
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Below we present the procedure for calculations of photodsociation cross section in bound-free transitions t =198 [fs]

(7 - initial state, f - final state) [1]: L | | | | | —i(bf(R;t)|' ] o | | | —@(R; t)|'

— Re[0(R; t)] : —— Re[®(R; 1)]
e the adiabatic potential energy curvest¢(R) and E;;l(R) for the electronic states between which the transi- I —— Im[@(R; )] | | I —— Im[o(R; t)]| ]

tion occurs,

e the electronic transition dipole moment functionﬁ;@(}?), 25

— —

e the nuclear wavefunctions¥*“( ) and ¥73*“(R),

o the photodissociation amplitudet;; = (V}"“(R) | jif.(R) - €| U"“(R)). 20 L )

Following Schinke [1] or Balint-Kurti [4] photodissociati on cross section may be given by expression

pﬂ- oton
o(w) = %Eph il (1) - 1,5 .

wheret; is the photodissociation amplitude, the factop = (27%) ! is a constant andE*"" is the energy of the
photon, provided that the energy in the upper electronic stée is always taken ask; = E; + EPtor [B]. 1,0 - — t =396 [fs] t =594 [fs]
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We consider the time-dependent nuclear Sclirdinger equation in the form

0
Zh&

(I)f(éa t) = f{mol(é)q)f(é; t)a (2)

where f(é; t) is a time-dependent wavepacket evolving on the adiabatic pential energy curve of the excited
electronic state and H,,,;(R) is the molecular hamiltonian. We can define the wavepacket aa coherent
superposition of stationary states, each being multipliedy the time-evolution factor e *£""#/% [5, 6, 7]. The 3,0 . I . I . I . I .

t=792[fs] t =990 [fs]
construction of the time-dependent wavepacket can be giveas : - - - - — T : - - - - —
I . s — o R;t) | - — o (R; t)]
=9 1 o Emoly /g — i ’ 7Re[ch(R; t)] ’ 7Re[d>f(R; t)]
s(R;t) = /Cf(E}nO)e EFTH ‘IJ?UC(R) dE}ma ) 2,5 — [ —— Im[@o(R; t)] | | I —— Im[®(R; )] | |

where & ;(R;1) is a solution of (2) because each stationary wavefunctiol}*( ) is an eigenfunction of,,,.(R)
with the energy E}Z”wl. In the next step we determine the initial condition in order to calculate coefficients 2,0 + 4
cr(EF) [, 6],

O(R;t =0) = % (R) - €U™(R). 4 15 L -

_ (\ 1% "(v=3) - 13ng
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The initial condition informs us that the wavepacket at its gart in the upper electronic state equals the

—

wavefunction of the parent molecule,¥““(R), multiplied by the electronic transition dipole moment function 10

—

ﬁ?!i(R). Using the equation (3) and the initial condition (4) we obta the relation

1 . _ . 1
cf(E}”OZ) =5= (UF"(R) \ﬁjfi(R) e UMY R)) = %tﬁ(E}P‘”), (5) 0.5 L ) Figure 4. Evolution of the time-dependent wavefunction in he considered photodissociation process after tran-
’ sition between the initial 13" (v = 4) state and the excited!’Tl, state.
where the photodissociation amplitudetfi(E;Z?Ol) is defined above. Multiplying (3) from the left by <I>f(ﬁ;t =0) i 9
and integrating over all nuclear coordinates gives 0.0 _ | . . | : _
© = (o . V1o . . 1 (BT o l © 15000 15500 16000 16500 17000 17500
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where S(t) is the autocorrelation function. Following Schinke [1] andthe equation (1) yields the final expression
for the total photodissociation cross section, References
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where ®;(R;t = 0) is the wavepacket at the start of the propagation process far = 0 and operator
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The propagation of the wavepacket involves the following sfps: the Fourier transformation of the wavepacket to

the momentum space, multiplying it by the free particle propagator exp(—:p® t/4m h) and transforming back to

the coordinate space, where it is multiplied byexp(—: E;;l(R) t/h). The resulting function is Fourier transformed

to the momentum space, multiplied byexp(—2 p?t/4 m k) and transformed again back to the coordinate space Figure 2. Photodissociation cross sections are calculatéar transitions between the initial 132 (v = 0, 1,2, 3, 4)
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in order to complete one timestep propagation [6, 8, 9]. states and the excited °II, state. Jozef E. Sienkiewicz e-mail: jeS@ mif. pggda pl



