The relativistic J-matrix method: theory and numerical computations
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Abstract

The J-matrix method is an algebraic method in quantum scattering theory. It is based on fact that
the radial kinetic energy operator is tridiagonal in some suitable bases. Non-relativistic version of the
method was introduced in 1974 by Heller and Yamani and developed by Yamani and Fishman a year after.
Relativistic version was introduced in 1998 by P. Horodecki. For a first time numerical calculations of
scattering phase shifts have been done using relativistic version of the J-matrix method. Here, we introduce
results of computations performed for square-type potential. Adequate computations have been performed
using Fortran 90 programming language and compiler.



What is the J-matrix method?

The main task is to find an approximate solution of the scattering problem on the radial potential V' = V (r)
vanishing faster than the Coulomb one. Let us replace this scattering potential by a truncated potential operator:

VN = PLV Py

with the generalized projection operator
N-1
! I
Py = Z ‘¢n> <¢n‘
n=0

Then, using expansion of the solution of the new problem in the basis {¢)}, one can find that tangent of
approximated phase shift is given by the formula:
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where s/, and ¢!, are coefficients of sine-like and cosine-like solutions of the following equation:
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Here, k = 2;’55 is the wave number related to the energy € and mass m of the projectile. Basis set {¢),} is

biorthonormal to set {¢},} with respect to unitary scalar product, i.e. (¢, [¢}) = G-
Jn,n—1 is an element of the following matrix:
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In some suitable bases, such as Gaussian or Laguerre set, the above matrix is tridiagonal (and is called Jacobi
or J-matrix). This enables us to find coefficients s, and c!,, using three-term recursion relation between them
and the J-matrix.

N is the quantity of base functions ¢, used to truncate scattering potential, g —1,n5—1(&) is a matrix element

of the inverse of the truncated operator P;{, (Ho + VN - %2) Py restricted to the N-dimensional space, where

it doesn’t vanish. When N — oo, what is connected with reduction of the approximation error of the potential,
0 should converge to the exact value.

The relativistic case

In this case we have very similar formula for tangent of the approximated phase shift:
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Here, we have the same coefficients of the expansion and J-matrix element as in the non-relativistic case,

(Efmc;z(Eer&), related to the total energy E = € +mc?. See [4]

for detailed explanation of the symbol QJJQJ:L ~_1- As in the non-relativistic case, it can be viewed as a matrix
element of the inverse of some trucated operator, but here restricted to the 2/N-dimensional space. To complete

E—mc?
E+mec2? -

only taken with the relativistic number k=

definitions, € = When ¢ — oo, the relativistic formula for tandy converges to the non-relativistic

one.



The model

Let’s consider spherically symmetric potential V' (r) defined by the square-well with respect to the radial coor-
dinate:

0 forr € (0,a)
V(ir)y=< V forr€la,b)
0 for r € [b,00)

The analytical formula for tangent of the phase shift can be simply found to be

B
tand = —.
an 1

The numbers A, B (depending on the energy of the projectile, the relativistic number , and parameters of the
potential) can be defined as coordinates of the following vector

{ g } = NP M (b)F =N (a)F * M (a)*" [ (1) ] |

where the 2 x 2 matrices M, N depending on the position are defined with aid of Ricatti-Bessel and Ricatti-
Neumann functions j;(r), n;(r) as follows

M(r)Er = [ Jilkr) —ny(kr)_ } N()Re = { Le(k)nier(br)  n(kr)

Fe(k)jir1(kr)  Fe(k)ni+i(kr) Fe(k)jizr(kr)  gi(kr)
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with the relativistic quantum number x = (k = — — 1) for upper (lower) sign of indices in the above formula.

k' is defined in the same way as k = X (E_mcj;(E+mcz), but with shifted energy E' = £ + Vy + mc? instead of
E. The number ¢ is defined as previously.




Numerical computations - scheme
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Results
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Convergence of the phase shift versus number of Laguerre and Gaussian (respectively) basis
functions N used to truncate the scattering potential. Straight line — analytical result.
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