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Abstract

The J-matrix method is an algebraic method in quantum scattering theory. It is based on fact that
the radial kinetic energy operator is tridiagonal in some suitable bases. Non-relativistic version of the
method was introduced in 1974 by Heller and Yamani and developed by Yamani and Fishman a year after.
Relativistic version was introduced in 1998 by P. Horodecki. For a first time numerical calculations of
scattering phase shifts have been done using relativistic version of the J-matrix method. Here, we introduce
results of computations performed for square-type potential. Adequate computations have been performed
using Fortran 90 programming language and compiler.

1



What is the J-matrix method?

The main task is to find an approximate solution of the scattering problem on the radial potential V = V (r)
vanishing faster than the Coulomb one. Let us replace this scattering potential by a truncated potential operator:

V N = P †
NV PN

with the generalized projection operator

PN =
N−1∑
n=0

∣∣φl
n

〉 〈
φl

n

∣∣ .

Then, using expansion of the solution of the new problem in the basis {φl
n}, one can find that tangent of

approximated phase shift is given by the formula:

tan δN = −sl
N−1(k) + gN−1,N−1(E)JN,N−1(k)sl

N (k)
cl
N−1(k) + gN−1,N−1(E)JN,N−1(k)cl

N (k)
,

where sl
n and cl

n are coefficients of sine-like and cosine-like solutions of the following equation:

(
H0 − k2

2

) ∞∑
n=0

ul
nφl

n(λr) = Ωuφ̄l
n(λr); u = s, c; Ωs = 0; Ωc = − k

2sl
0

.

Here, k ≡
√

2mE
h̄2 is the wave number related to the energy E and mass m of the projectile. Basis set {φ̄l

n} is

biorthonormal to set {φl
n} with respect to unitary scalar product, i.e.

〈
φ̄l

m|φl
n

〉
= δmn.

JN,N−1 is an element of the following matrix:

Jmn ≡ 〈
φl

m

∣∣ H0 − k2

2

∣∣φl
n

〉 ≡ 〈
φl

m

∣∣ − 1
2

d2

dr2
+

l(l + 1)
2r2

− k2

2

∣∣φl
n

〉
.

In some suitable bases, such as Gaussian or Laguerre set, the above matrix is tridiagonal (and is called Jacobi
or J-matrix). This enables us to find coefficients sl

n and cl
n, using three-term recursion relation between them

and the J-matrix.
N is the quantity of base functions φl

n used to truncate scattering potential, gN−1,N−1(E) is a matrix element

of the inverse of the truncated operator P †
N

(
H0 + V N − k2

2

)
PN restricted to the N -dimensional space, where

it doesn’t vanish. When N → ∞, what is connected with reduction of the approximation error of the potential,
δN should converge to the exact value.

The relativistic case

In this case we have very similar formula for tangent of the approximated phase shift:

tan δ̃N = −sl
N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)sl
N (k̃)

cl
N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)cl
N (k̃)

.

Here, we have the same coefficients of the expansion and J-matrix element as in the non-relativistic case,

only taken with the relativistic number k̃ ≡
√

(E−mc2)(E+mc2)

ch̄ , related to the total energy E = E + mc2. See [4]
for detailed explanation of the symbol G++

N−1,N−1. As in the non-relativistic case, it can be viewed as a matrix
element of the inverse of some trucated operator, but here restricted to the 2N -dimensional space. To complete
definitions, ε ≡

√
E−mc2

E+mc2 . When c → ∞, the relativistic formula for tan δ̃N converges to the non-relativistic
one.



The model

Let’s consider spherically symmetric potential V (r) defined by the square-well with respect to the radial coor-
dinate:

V (r) =




0 for r ∈ (0, a)
V0 for r ∈ [a, b)
0 for r ∈ [b,∞)

.

The analytical formula for tangent of the phase shift can be simply found to be

tan δ =
B

A
.

The numbers A, B (depending on the energy of the projectile, the relativistic number κ, and parameters of the
potential) can be defined as coordinates of the following vector

[
A
B

]
= N(b)k̃,κM(b)k̃′,κN(a)k̃′,κM(a)k̃,κ

[
1
0

]
,

where the 2 × 2 matrices M , N depending on the position are defined with aid of Ricatti-Bessel and Ricatti-
Neumann functions jl(r), nl(r) as follows

M(r)k̃,κ =
[

jl(kr) −nl(kr)
∓ε(k̃)jl±1(k̃r) ±ε(k̃)nl±1(k̃r)

]
, N(r)k̃,κ =

[ ±ε(k̃)nl±1(k̃r) nl(k̃r)
∓ε(k̃)jl±1(k̃r) jl(k̃r)

]

with the relativistic quantum number κ = l (κ = −l− 1) for upper (lower) sign of indices in the above formula.

k̃′ is defined in the same way as k̃ ≡
√

(E−mc2)(E+mc2)

ch̄ , but with shifted energy E′ = E + V0 + mc2 instead of
E. The number ε is defined as previously.



Numerical computations - scheme
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Results
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Convergence of the phase shift versus number of Laguerre and Gaussian (respectively) basis
functions N used to truncate the scattering potential. Straight line – analytical result.
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Root-mean-square error, averaging 20 points backwards and 20 forwards. Laguerre and Gaus-
sian basis set, respectively.
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