# The relativistic J-matrix method: theory and numerical computations 

P. Syty ${ }^{1}$, P. Horodecki and J. E. Sienkiewicz<br>Katedra Fizyki Teoretycznej i Metod Matematycznych Politechnika Gdańska, ul. Narutowicza 11/12, 80-952 Gdañsk, Poland<br>${ }^{1}$ e-mail: sylas@task.gda.pl


#### Abstract

The J-matrix method is an algebraic method in quantum scattering theory. It is based on fact that the radial kinetic energy operator is tridiagonal in some suitable bases. Non-relativistic version of the method was introduced in 1974 by Heller and Yamani and developed by Yamani and Fishman a year after. Relativistic version was introduced in 1998 by P. Horodecki. For a first time numerical calculations of scattering phase shifts have been done using relativistic version of the J-matrix method. Here, we introduce results of computations performed for square-type potential. Adequate computations have been performed using Fortran 90 programming language and compiler.


## What is the J-matrix method?

The main task is to find an approximate solution of the scattering problem on the radial potential $V=V(r)$ vanishing faster than the Coulomb one. Let us replace this scattering potential by a truncated potential operator:

$$
V^{N}=P_{N}^{\dagger} V P_{N}
$$

with the generalized projection operator

$$
P_{N}=\sum_{n=0}^{N-1}\left|\phi_{n}^{l}\right\rangle\left\langle\phi_{n}^{l}\right|
$$

Then, using expansion of the solution of the new problem in the basis $\left\{\phi_{n}^{l}\right\}$, one can find that tangent of approximated phase shift is given by the formula:

$$
\tan \delta_{N}=-\frac{s_{N-1}^{l}(k)+g_{N-1, N-1}(\mathcal{E}) J_{N, N-1}(k) s_{N}^{l}(k)}{c_{N-1}^{l}(k)+g_{N-1, N-1}(\mathcal{E}) J_{N, N-1}(k) c_{N}^{l}(k)},
$$

where $s_{n}^{l}$ and $c_{n}^{l}$ are coefficients of sine-like and cosine-like solutions of the following equation:

$$
\left(H_{0}-\frac{k^{2}}{2}\right) \sum_{n=0}^{\infty} u_{n}^{l} \phi_{n}^{l}(\lambda r)=\Omega_{u} \bar{\phi}_{n}^{l}(\lambda r) ; u=s, c ; \quad \Omega_{s}=0 ; \quad \Omega_{c}=-\frac{k}{2 s_{0}^{l}}
$$

Here, $k \equiv \sqrt{\frac{2 m \mathcal{E}}{\hbar^{2}}}$ is the wave number related to the energy $\mathcal{E}$ and mass $m$ of the projectile. Basis set $\left\{\bar{\phi}_{n}^{l}\right\}$ is biorthonormal to set $\left\{\phi_{n}^{l}\right\}$ with respect to unitary scalar product, i.e. $\left\langle\bar{\phi}_{m}^{l} \mid \phi_{n}^{l}\right\rangle=\delta_{m n}$.
$J_{N, N-1}$ is an element of the following matrix:

$$
J_{m n} \equiv\left\langle\phi_{m}^{l}\right| H_{0}-\frac{k^{2}}{2}\left|\phi_{n}^{l}\right\rangle \equiv\left\langle\phi_{m}^{l}\right|-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1)}{2 r^{2}}-\frac{k^{2}}{2}\left|\phi_{n}^{l}\right\rangle .
$$

In some suitable bases, such as Gaussian or Laguerre set, the above matrix is tridiagonal (and is called Jacobi or J-matrix). This enables us to find coefficients $s_{n}^{l}$ and $c_{n}^{l}$, using three-term recursion relation between them and the J-matrix.
$N$ is the quantity of base functions $\phi_{n}^{l}$ used to truncate scattering potential, $g_{N-1, N-1}(\mathcal{E})$ is a matrix element of the inverse of the truncated operator $P_{N}^{\dagger}\left(H_{0}+V^{N}-\frac{k^{2}}{2}\right) P_{N}$ restricted to the $N$-dimensional space, where it doesn't vanish. When $N \rightarrow \infty$, what is connected with reduction of the approximation error of the potential, $\delta_{N}$ should converge to the exact value.

## The relativistic case

In this case we have very similar formula for tangent of the approximated phase shift:

$$
\tan \tilde{\delta}_{N}=-\frac{s_{N-1}^{l}(\tilde{k})+\frac{2 \epsilon}{\hat{k}} \mathcal{G}_{N-1, N-1}^{++}(E) J_{N, N-1}(\tilde{k}) s_{N}^{l}(\tilde{k})}{c_{N-1}^{l}(\tilde{k})+\frac{2 \epsilon}{\hat{k}} \mathcal{G}_{N-1, N-1}^{++}(E) J_{N, N-1}(\tilde{k}) c_{N}^{l}(\tilde{k})} .
$$

Here, we have the same coefficients of the expansion and J-matrix element as in the non-relativistic case, only taken with the relativistic number $\tilde{k} \equiv \frac{\sqrt{\left(E-m c^{2}\right)\left(E+m c^{2}\right)}}{c \hbar}$, related to the total energy $E=\mathcal{E}+m c^{2}$. See [4] for detailed explanation of the symbol $\mathcal{G}_{N-1, N-1}^{++}$. As in the non-relativistic case, it can be viewed as a matrix element of the inverse of some trucated operator, but here restricted to the $2 N$-dimensional space. To complete definitions, $\epsilon \equiv \sqrt{\frac{E-m c^{2}}{E+m c^{2}}}$. When $c \rightarrow \infty$, the relativistic formula for $\tan \tilde{\delta}_{N}$ converges to the non-relativistic one.

## The model

Let's consider spherically symmetric potential $V(r)$ defined by the square-well with respect to the radial coordinate:

$$
V(r)=\left\{\begin{array}{l}
0 \text { for } r \in(0, a) \\
V_{0} \text { for } r \in[a, b) \\
0 \text { for } r \in[b, \infty)
\end{array} .\right.
$$

The analytical formula for tangent of the phase shift can be simply found to be

$$
\tan \delta=\frac{B}{A}
$$

The numbers $A, B$ (depending on the energy of the projectile, the relativistic number $\kappa$, and parameters of the potential) can be defined as coordinates of the following vector

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]=N(b)^{\tilde{k}, \kappa} M(b)^{\tilde{k}^{\prime}, \kappa} N(a)^{\tilde{k}^{\prime}, \kappa} M(a)^{\tilde{k}, \kappa}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where the $2 \times 2$ matrices $M, N$ depending on the position are defined with aid of Ricatti-Bessel and RicattiNeumann functions $j_{l}(r), n_{l}(r)$ as follows

$$
M(r)^{\tilde{k}, \kappa}=\left[\begin{array}{cc}
j_{l}(k r) & -n_{l}(k r) \\
\mp \epsilon(\tilde{k}) j_{l \pm 1}(\tilde{k} r) & \pm \epsilon(\tilde{k}) n_{l \pm 1}(\tilde{k} r)
\end{array}\right], N(r)^{\tilde{k}, \kappa}=\left[\begin{array}{cc} 
\pm \epsilon(\tilde{k}) n_{l \pm 1}(\tilde{k} r) & n_{l}(\tilde{k} r) \\
\mp \epsilon(\tilde{k}) j_{l \pm 1}(\tilde{k} r) & j_{l}(\tilde{k} r)
\end{array}\right]
$$

with the relativistic quantum number $\kappa=l(\kappa=-l-1)$ for upper (lower) sign of indices in the above formula. $\tilde{k}^{\prime}$ is defined in the same way as $\tilde{k} \equiv \frac{\sqrt{\left(E-m c^{2}\right)\left(E+m c^{2}\right)}}{c h}$, but with shifted energy $E^{\prime}=\mathcal{E}+V_{0}+m c^{2}$ instead of $E$. The number $\epsilon$ is defined as previously.

## Numerical computations - scheme



## Results




Convergence of the phase shift versus number of Laguerre and Gaussian (respectively) basis functions $N$ used to truncate the scattering potential. Straight line - analytical result.


Root-mean-square error, averaging 20 points backwards and 20 forwards. Laguerre and Gaussian basis set, respectively.

## References

[1] E. Heller, H. Yamani, New L2 approach to quantum scattering: Theory, Phys. Rev. A 9 (1974) 1201
[2] E. Heller, H. Yamani, J-matrix method: Application to s-wave electron-hydrogen scattering, Phys. Rev. A 9 (1974) 1209
[3] H. Yamani, L. Fishman, J-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering, J. Math. Phys. 16 (1975) 410
[4] P. Horodecki, The relativistic J-matrix method, submitted to J. Phys. B: At. Mol. Opt. Phys.
[5] P. Syty, Programowanie metody J-macierzy, praca dyplomowa, Politechnika Gdańska, 1999
[6] P. Syty, The relativistic J-matrix method: Numerical computations, TASK Quarterly, vol 3, nr 3
[7] P. Syty, P. Horodecki and J. E. Sienkiewicz, The relativistic J-matrix method: Numerical computations, submitted to Phys. Lett. A

