Below we present the procedure for calculations of photodsociation cross section in bound-free transitions

During the last 20 years, the physics of dilute gases has sesrajor advances in two fields: laser cooling of (i - initial state, f - final state) [1]

atomic and molecular samples and femtosecond chemistry. lboth cases, a strong motivation is to use laser
light in order to achieve a better control of the system by redicing the energy distribution of the various degrees e the adiabatic potential energy curvest¢(R) and E;;l(R) for the electronic states between which the transi-
of freedom. In this context, two fundamental processes, i.ephotoassociation and photodissociation, or in other tion occurs,

words formation and breaking of the chemical bond, have motrated a lot of theoretical and experimental stud-
ies. Photodissociation of diatomic and small polyatomic mecules is an ideal field for investigating molecular

dynamics at a high level of precision [1]. In this poster we pesent the preliminary theoretical description of the e the nuclear wavefunctions¥<( ﬁ) and W ( ﬁ),

photodissociation process. = . =
Our attention is focused on the theoretical treatment of eletronic predissociation processes in the lithium hy- o the photodissociation amplitudet s; = (V}*“(R) | jif,(1) - €| Uj"(R)).
dride molecule. We base our considerations on the Nal dimewhich is an interesting and well studied prototype
molecule in femtochemistry [2, 3, 4, 5, 6]. We propose to ingtigate the LiH molecule which shows similar in-
teresting behavior as Nal. Our project is divided into two pats: electronic structure calculations and nuclear
wave packet dynamics induced by femtosecond laser pulses.

e the electronic transition dipole moment function/j%(ﬁ),

Following Schinke [1] or Balint-Kurti [18] photodissociation cross section may be given by expression

107T oton
o(w) = @Eph O [t i), (1)

wheret ; is the photodissociation amplitude, the factop = (277%)~! is a constant andE*"*" is the energy of the
photon, provided that the energy in the upper electronic stée is always taken ast; = E; + EPotor [19].

coupling terms [a.u.]

To calculate adiabatic potential energy curves of the LiH dmer we use multiconfigurational self-consistent
field/complete active space self-consistent field (MCSCFASSCF) method and multi-reference configuration
interaction (MRCI) method. In this approach we do not include spin-orbit interaction. All calculations are
performed by means of the MOLPRO program package [7]. In orde to describe the two-channel electronic We consider the time-dependent nuclear Sclidinger equation in the form

predissociation in the lithium hydride molecule, we have deided to consider five the lowest laying adiabatic and 9 . R . .

diabatic potential energy curves for singlet and triplet sgma states, which correlate to the Li(2s) + H(1s) ground Zhacbf(R; t) = Hna(R)®(R; 1), (2)
atomic asymptote and Li(2p) + H(1s), Li(3s) + H(1s), Li(3p) +H(1s), Li(3d) + H(1s) excited atomic asymptotes
(Fig. 1 and Fig.2). The quality of our calculations were confmed in our previous papers [8, 9]. Using adia- where @ ((R; 1) is a time-dependent wavepacket evolving on the adiabatic pential energy curve of the excited
batic potentials and split diabatic representation method10] we calculated the diabatic potential energy curves. electronic state and H,,,;(R) is the molecular hamiltonian. We can define the wavepacket aa coherent
Equilibrium positions Re and depths of the potential wells [ are in very good agreement with other theoretical superposition of stationary states, each being multipliedy the time-evolution factor e *£""#/4 [19, 20, 21]. The

and experimental results (Table 1) and it confirms high qually of our calculations. construction of the time-dependent wavepacket can be giveas
Table 1. Spectroscopic parametersz, (ay) and D, (cm™!) for the ground and excited states of.: F molecule.

—

(I)f(R; t) _ / Cf(E}nOl) e—ZE}”Olt/h \If?uc(é) dE}nOl, (3)

State R, D,
11yt Li(2s) + H(1s)
Exp.[11] 3.015 where @ ;( R; t) is a solution of (2) because each stationary wavefunctiohjﬁ“c(ﬁ) is an eigenfunction of 7,/ ( R)
Theory[12] 3.003 with the energy E}”Ol. In the next step we determine the initial condition in order to calculate coefficients
Theory[13] 3.007 cr(E7) [1, 20],

Present work 3.000

Figure 3. Non-adiabatic couplings between the concernedmilet sigma states of the LiH dimer.

(Rt =0) = jify(R) - eV (R). (4)
21y Li(2p) + H(1s)
Exp.[11] 4.906
Theory[12] 4.862
Theory[13] 4.847
Present work 4.800

The initial condition informs us that the wavepacket at its gart in the upper electronic state equals the

—

wavefunction of the parent molecule,W"“( R), multiplied by the electronic transition dipole moment function
ﬁjfi(R). Using the equation (3) and the initial condition (4) we obtan the relation

mol 1 nuc/ B\ | 2l (DY 2| aynuc) D 1 mol
- L(3s)HH(s) ef(BY) = 5 (W) (R) | () - €| W (B)) = oo (B, ©)
Exp.[14] - - o : o . a
10.140 8469 Where the photodlssomatlon amplltud_etfi(E?O_l) is defined above. Multiplying (3) from the left by ®¢(R;t = 0)
Theory[12] 3821 ) y and integrating over all nuclear coordinates gives
10.181 8453 . . . 1 o
Theory[13] 3.825 1277 S(t) = (s(Rt =0)| ®p(Rit)) = o — / [t (BP) P e B a gy (6)
10.206 8444 '
Present work 3.800 1267 where S(t) is the autocorrelation function. Following Schinke [1] andthe equation (1) yields the final expression
10.250 8440 K ’ for the total photodissociation cross section,
In order to present the nuclear wave packet dynamics inducedby (ultraviolet) femtosecond laser pulses, we have P ohoton +00 T
to also calculate non-adiabatic couplings between considl states (Fig. 3) and transition dipole moments (Fig. o(E) = hege E /_OO e S(t) dt, (7)
4). These results are also performed by means of the MOLPRO pgram package [7] and overall agreement : .
with other theoretical data is very reasonable [12, 15, 16]. ' The formal solution of the time-dependent Schédinger equation (2) is given by
Calculated adiabatic and diabatic potentials, non-adiab#c couplings and transition dipole moments allow us to ) ) . )
present and describe the two-channel electronic prediss@tion in lithium hydride molecule. We have decided : Qr(R;t) = emfol@f(}%;t =0), (8)
to consider the transition from the 1'¥* ground state, to3'X" excited state. After transition we will investigate
the propagatio_n of_the waye packet. in the system of thrge craings between the three lowest lying singlet sigma where CDf(ﬁ;t — 0) is the wavepacket at the start of the propagation process for — 0 and operator
states of the LiH dimer (Fig. 5). Using the above described mults and WavePacket 4.6, a program package for
guantum-mechanical wavepacket propagation and time-dep®lent spectroscopy [17], we will be able to display ) ;' . — ﬁ[mol( ﬁ)t
the nuclear as well as the electronic dynamics on the femtosend (and attosecond) time scale. |.e., to observe SRR U(t) = exp [ 7 ] ’ )
electronic excitation and subsequent nuclear motion. Andn the next step, we will present investigation of :
how laser pulse shaping might influence the expected non-abatic dissociation dynamics. Thus, this project : o Is the time-evolution operator [21, 22, 23]. With (8) inseréd into (6) and using the initial condition (4) the

considers a lot of interesting problems of femtochemistry. autocorrelation function becomes

—1H,, 1 (R)t
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In the beginning of the propagation, the wavepacket is consticted by the product of the nuclear wavefunction

—

Ue(R) and the element of the electronic transition dipole momentunction in the direction of the polarization

of the electric field /jj}i(R) - €. Using the split-operator method SPO, the time-evolution perator (9) is approxi-
mated by a symmetric splitting of the kinetic energy operato in the following way [20, 22, 23]

2 _[:Imo_)t _Tmo_’t _Amo_)t _Tmo_)t
U(t):exp[ ! hl(R) ] %exp[ ! 27;(R) ]exp[ thl(R) ]exp[ ! 27_1(}%) ] (11)

Figure 4. LiH adiabatic 'X" transition dipole moments

The propagation of the wavepacket involves the following sfps: the Fourier transformation of the wavepacket to
the momentum space, multiplying it by the free particle propagator exp(—:p? t/4m h) and transforming back to
the coordinate space, where itis multiplied byexp(— E¢'(R) t/h). The resulting function is Fourier transformed
to the momentum space, multiplied byexp(—:p*t/4 m k) and transformed again back to the coordinate space

- in order to complete one timestep propagation [20, 22, 23].
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