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The contribution of exchange interactions is investigated for spin polar-
ization of electrons which are scattered elastically from xenon and mercury at
the energy of 1.5 eV. We find that electron exchange between the bound-state
and the scattered electron gives rise to a substantial spin polarization in both
cases.

PACS numbers: 34.80.Bm, 31.30.Jv

1. Introduction

Spin polarization of electrons scattered elastically from heavy atoms has
attracted the attention of experimentalists and theoreticians for many years. A
detailed account on the subject of spin polarization in the electron scattering
from mercury and xenon is given in papers of Szmytkowski and Sienkiewicz [1, 2].
Since then, the relativistic configuration interaction method has been applied also
for calculating spin polarization effects in the elastic scattering of electrons from
xenon [3]. Recently, moreover, Diimmler et al. [4, 5] measured the spin polarization
of electrons for the elastic scattering from xenon and for the inelastic scattering
from argon, krypton, and xenon. As has been pointed out by these authors, only
the spin-orbit interaction is expected to contribute to the left-right asymmetry
of the scattered electrons in the field of the target atom (Mott scattering). Apart
from the spin—orbit interaction, however, the exchange interaction of the scattered
electron with the bound-state electrons and the continuum—continuum interaction
among the scattered electrons may also contribute to the spin polarization.

In this paper we investigate the effects of exchange on the spin polariza-
tion of electrons which are scattered from heavy, closed-shell atoms like xenon
or mercury which has a closed 6s? subshell. Our aim is to demonstrate that in
elastic electron scattering from the closed-shell atoms substantial contribution to

(41)



42 J.E. Sienkiewicz, S. Fritzsche, P. Syty

the spin polarization arises from the exchange interactions between the scattered
electron and the electrons of the target atom. In addition, we also study the dis-

crepancy between theory and experiment which occurred for xenon at the energy
of 1.5 eV [4].

2. Theoretical method

The continuum orbitals are solutions of the inhomogeneous radial Dirac
equations [6, 7] which, in atomic units, can be written as

(dd,. ) Pe(r) = {2c+ i—[c — Vie(r) — me(r]]} Qx(r) + Xo(r), (1)

(;_1" - ;) Qx(r) = [5 = Vie(r) — Vpol(")] Pi(r) — Xp(r). (2)

In this coupled pair of equations, Ps(r) and Q(r) are the large and small radial
components, and Kk = + (j + 1/2) for | = j + 1/2 is the relativistic angular
momentum quantum number, ¢ = 137.036 is the speed of light and ¢ is the energy
of the electron. Here, Vi.(r) is the direct frozen-core potential, and Vpe(r) —
the relativistic polarization potential, while Xq(r) and Xp(r), respectively, are
the exchange terms for the large and small components. Vjq(r) describes the
polarization of the target atom owing to the electric field of the scattered electron;
here we applied a potential in a numerical form as obtained from the relativistic
polarized-orbital method [8].

The scattering equations are solved by a standard outward integration ap-
plying an algorithm developed by Sienkiewicz and Baylis [9] and starting from the
boundary conditions P(0) = Q.(0) =0

The two complex scattering amplitudes f(19) (the direct amplitude) and g(7)
(the “spin-flip” amplitude) are defined as

f(9) = 2%2 {(1 + 1) [exp(2i6}) — 1] +1 [exp(2i67) — 1]} Pi(cos D),  (3)

Z exp(2i6;) — exp(2ié;")] P (cos 9), (4)

where ¥ is the scattering angle and Pj(cos ) and P}!(cos ) are, respectively, the
Legendre polynomial and the assocxated Legendre function [10]; 6 are the rela-
tivistic phase shifts. The “4” sign in 6, refers to the solutions of Eqs (1) and (2)
with kK = —I — 1 while the “=” sign refers to k = L.

From the amplitudes (3) and (4) the spin polarization cross section is ob-
tained from

S(9) = i(_f%-;)f—'-"), (5)
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where o(J) = |f|® + |g|* is the differential cross section for an unpolarized inci-
dent beam [10]. Relativistic phase shifts §* in Eqs. (3) and (4) are calculated by
comparing the numerical solutions of the Dirac—Hartree-Fock equations (1) and
(2) with the asymptotic solutions at large r, when r?V(r) — 0

P.(r a %
# = ji(kr) cos §F — ny(kr)sin 6 (6)

Qﬁr(r) =2y —— Liilkr) cos & — nykr) sin 5] i

In these asymptotic forms, k = v/2¢ 4+ a2¢? denotes the momentum of the incident
electron and ji(kr) and n;(kr) are the spherical Bessel and Neumann functions,
respectively. In Eq. (7) [ = [ £ 1, where the upper sign is taken for £ < 0 and the
lower one for &£ > 0. In the present work, we calculate phase shifts for all elastic
channels with [ =0, 1, ..., 6. In Egs. (3) and (4), the sums in the scattering am-
plitudes are furthermore extended to [ = 50 using an approximate non-relativistic
formula of Ali and Fraser [11].

3. Results and discussion

Calculations have been performed for a scattering energy of 1.5 eV which
is, so far, the lowest experimental energy which was applied to xenon. We carried
out two types of calculations. We first applied the full scattering equations (1)
and (2). In this case both, the spin—orbit interaction as well as the exchange one
between the projectile electron and the bound-state electrons, are taken into ac-
count appropriately. In the second case, we retain the exchange terms in Eqs. (1)
and (2) while the spin-orbit interaction is neglected. This is obtained by using
the non-relativistic limit, i.e. by multiplying the speed of light constant ¢ with a
large factor, say 10%. This makes the spin—orbit interaction term and two other
terms, namely the Darwin term and the relativistic mass correction term, negligi-
ble small; these three terms are of the order of v*/c? (e.g. [12]). At low energies and
subsequently small velocities of the projectile electron velocity, we do, of course,
not expect other relativistic terms (apart from the spin—orbit interaction) to play
any crucial role in the scattering process. The significance of the spin—orbit inter-
action, even at low scattering energies, is related to the slightly different scattering
potentials for the electrons with different quantum numbers & but the same orbital
quantum number [. Thus, in order to investigate these effects we have to retain the
relativistic description of the target atom, where for instance, the d3;5 (k = 2) and
ds/s (k = —3) orbitals are different. Note that for different values of & (e.g. k = 2
or —3) and the same value of | (e.g. | = 2) we still obtain different continuum
orbitals due to slightly different exchange terms in scattering equations.

Two test calculations have been carried out to check our results, for which
the spin polarization must vanish for all scattering angels. In the first test, the
non-relativistic limit is taken for both, the bound-state description as well as the
solving the scattering equations. In the second test, the exchange terms are omitted
in nonrelativistic scattering equations, while the bound-states are obtained from
relativistic calculations. Both cases were tested numerically and, as expected, did
not result in any spin polarization.
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Fig. 1. Spin polarization for electron scattering from xenon at 1.5 eV. Experimental
results of Diimmler et al. [4] are compared with the present theoretical results, which
include the exchange and spin-orbit interactions (solid line), and only the exchange
interactions (dashed line).
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Fig. 2. Spin polarization for electron scattering from mercury at 1.5 eV. Experimental
results of Diimmler et al. [5] are compared with the present theoretical results, which
include the exchange and spin-orbit interactions (solid line), and only the exchange
interactions (dashed line).
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Figure 1 displays our theoretical results for the elastic scattering from Xe at
the energy of 1.5 eV together with the experimental data of Diimmler et al. [4]
which show a very small positive polarization for all scattering angles smaller
than 100°. This observation disagrees with our present results and also with an
independent theoretical study by McEachran and Stauffer [13] who obtained a
similar distinct minimum at the forward angles. In fact, their results are almost
identical with ours and are therefore not displayed in the figure. McEachran
and Stauffer have solved the relativistic form of the Schrédinger equation with
the non-relativistic polarization potential. Our calculations with the neglected
spin-orbit interaction but with exchange show only the minimum at the back-
ward scattering angles. The minimum in the spin polarization is well pronounced
and shows the importance of exchange. At the forward angles, the discrepancy
between theory and experiment may be caused by neglected short range corre-
lations or by cancellation effects due to the continuum-continuum interactions.
Calculations performed at the same energy for mercury also show a substantial
contribution of exchange to the spin polarization at large angles (Fig. 2). In this
case, however, both theoretical lines — with and without the spin-orbit interaction
— show the same qualitative behaviour over the whole angular range.

4. Conclusions

In conclusion, the spin-flip probability due to exchange plays a quite sig-
nificant role in elastic low-energy scattering from xenon. This is in contrast to
earlier expectations of Diimmler et al. [4]. A comparable situation has been found
in our results for mercury. Therefore, the various interactions on the spin po-
larization should be further investigated to understand the dominant contribu-
tions and to resolve the discrepancy between experimental and theoretical results.
An advanced theoretical approach should also include the dominant parts of the
continuum-continuum interaction which may cancel the influence of the spin-orbit
and exchange interactions at the forward angles. To introduce continuum-continu-
um contributions, however, is a difficult task, in particular in relativistic calcula-
tions. We started to develop the relativistic program to include at least the interac-
tion with polarized core charge in analogy to the nonrelativistic N + 1 correlation
method of Saha [14].

For the backward scattering, we hope that more experimental data become
available to better understand the structure in the spin polarization cross sections
at large angels.

This work has been supported by the Committee for Scientific Research un-
der the grant No. 2 P03B 009 12.
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