The required level of accuracy in calculations of the molecular systems makes that relatively
small and subtle effects have to be taken into account. Two important effects are correlation

and relativity. Here, we limit ourselves to the electron correlation effects. Practical calcula-
tions of systems with heavy atoms are performed with frozen closed-shell cores or replacing
these cores by by pseudo-potentials or model potentials. It had been already proved that
the so called core-polarization model was very useful. It was used many years ago to im-
prove hand-made Hartree calculations [1]. Recent calculations on atoms have been used to
illustrate the importance of correlation effects using the polarization model [2].

We assume that the oscillator represents an atomic core and E represents the field from
valence electrons. From classical electrodynamic it is well known that the effect of the exter-
nal field E on the oscillator induces a dipole moment oE and shifts all energy levels by the
same amount, —%ozEQ. This enables to model correlation effects by assuming that the core
possesses a dipole polarizability « in the presence of the field E.

We consider two interacting atoms (A and B) at long range. The total hamiltonian can be
written as

H=H, s+ Hpg+ V3,

where H4 and Hjp are the hamiltonians of the isolated atoms and V 45 is the interaction
between these atoms. A useful approach is given by Baylis [3] provides a practical expression
for V og, where the separate contributions of the valence electrons and the closed-shell cores
of atom A and B are considered:

Vip=V(es —ep)+ V(cores — coreg) + V(eqg — coreg) + V(eg — corep),

where V(e4 — ep) is the interaction between the valence electrons of atom A and those of
atom B, V(e4 — corep) is the interaction of the valence electrons of A with the core electrons
of B, etc [3].

The valence self core correlation is given by term
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where a4 is the static dipole polarizability of the atom A, ¢4 is the ny, - electron wave-
function and E 44 is the electric field due to all valence electrons and other charged cores,
appropriately averaged over the distribution of A. The above term is independent on inter-
nuclear separation, so it could be accounted for adjusting of asymptotic energies. In atomic
units the electric field at A can be written as

where x(r) is the cut-off function. A simple way to extract model polarization parameters is
to average the energy adjustment of a given triple state with that of corresponding singlet
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in which gbfﬁ and ¢f4_) are the singlet and triplet wave-functions, respectively, v and w are
one- and two-electron (dielectric) terms of the valence-self core interaction (—ia4E%, =
v + w), 1, IS the one electron atomic orbital centered on A. The one-electron term can be
written as

v = Zvn = —%QAZT;4X2(TH).

In fact we have to compare simple average of the energy adjustment for singlet and appro-
priate triplet to the expression
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where @bﬁf) and @bﬁlg) are the one-electron atomic spin-orbitals of the excited and ground state,
respectively, v; = —ar; *x?(r1) is the one-electron term with the cut-off function x(r) [4]
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One possibility is to take a4 or r, from independent sources. Another values of a4 and r
can be find by the least square method.

Other-core interaction may be represented by the following expression
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where E is the electric field acting on the atom A at D due a positive core charge 7z of the
atom B at the origin and its 7 electrons at r,,, {n = 1,2}. Our aim is to calculate diagonal
matrix elements
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where ¢p is the CI wave-function of the atom B. ¢B is the linear combination of the Slater
determinants
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In term every spatial part ¢, of the spin-orbital @Tk is the linear combination of the gaussian
type orbitals g;
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In fact the basic elements which have to be calculated are
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where v 45 Is the one-electron other-core interaction operator. To calculate the above matrix
elements between two arbitrary gaussians we start with the basic element
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where a3 = s and p/(s) = e~*"9. Now
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where I is the standard integral. Making further calculations we get
1 0 <S(1)|X(|P—a3|)
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All needed elements in the gaussian base are found by use of the above equation, table of
integrand factors and bellow equation
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where the integrand factor F’(s) is given in Table 1.

We have derived the general expressions for matrix elements of polarization model potential
Is the gaussian base. Integrand factor has been calculated for differ symmetry of gaussian
functions. We are going to apply this approach to Cs, diatomic system and next to expand
it to cesium cluster.

du e (R-a;)-h-(R—a;) 1-(R—ay) -m- - (R—ay) -0
(R—a3) - k+ 23R —a,)-h-(R—ay)-1
R-as)-k+ 2 (R -ay) -m-(R—ap) 0
(R—ag)-kK+ R -a;)-h-(R—ay)-m
(R—as)-k+ @R -ay) -h-R-ay)-n
(R—as) - kK+22R—a;) 1-(R—a,) -m
(R—a5) k+52R—an)- - R—ag) &
-(R—a3) k+(s%)?(h-lm-n+h-m-1-n+h-n-1-m)-
(R—as)-k+EB(R —a;)-T- (R—ay)-m-
(R—ap) A+ E(R—ay) -h-(R—ay) m-
(R—ay) -A+50(R—a;) -h-(R-ay) 1.
(R—ay) A+ (R —a)) h-(R-ap)-1
(I}:az)'fflJr ﬁ(l'zf;l){éh(fiial)“‘ %i;{zl(R—al) h-+
AR (R-2y) -+ BSP(R — ag) -+
+5a7 (R-a) - M+ SR (R —ap) - h +
+5ar R-2) A+ 5 (R —a1) - h+
+ar (R-ag) M+ BRER(R —ay) - 1+
+BI (R - ay) - i+ BREA(R —ay) 1+

TABLE 1. Integrand factor F'(s).
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