Adiabatic Potential-Energy Curves of the Lithium Dimer

Patryk Jasik, Józef E. Sienkiewicz

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology ul. Narutowicza 11/12, 80-952 Gdańsk, Poland

The molecule $L i_{2}$ which besides H_{2} is the smallest stable homonuclear molecule, has attracted the interest of many experimentalists and theoreticians during the last decade. A broad variety of spectroscopic phenomena is observed for $L i$, , and the accurate specification of its because it is an active laser medium.
While a large number of electronic states has been observed experimentally, the knowledge of the excited states of $L i_{2}$ is far from being complete. Apparently, only three singlet states of ungerade symmetry and just one triplet state are known from experiment. Of the lowlying states, the second ${ }^{1} \Sigma_{g}^{+}$and the first ${ }^{1} \Pi_{g}$ state are missing which. Only the X state is known up to the dissociation limit. Lifetimes have only been measured for the state
B. Perturbations in the lower region of the Rydberg series are not well analyzed. B. Perturbations in the lower region of the Rydberg series are not well analyzed.

This situation calls for theory to provide predictions of the potential curves and spectroscopic
constants especially of the unobserved electronic states, to assist spectroscopists in the interconstants especially of the unobserved electronic states, to assist spectroscopists in the inter-
pretaiton of obss
measurement.

Computational Methods

Homonuclear diatomic molecules have a symmetry which arises from the invariance of the Hamiltonian when the two nuclei are interchanged. Each rotational level is assigned as symnetric (\mathbf{s}), if its wavefunction remains the same and as antisymmetric (a), if its wavefunction changes sign upon interchanging the nuclei. Such molecules ($L i_{2}$) have $D_{\text {oh }}$ symmetry. For homopolar isotopically unsymmetric diatomic molecules, such as $H D$ or ${ }^{6} L i^{7} L i$ the situation fa) and (s) levels occurs

The choice of pseudopotential and the basis set CP (Effective Core Potential): ECP2SDF with additional functions CPP (Core Polarization Potentia): $\alpha=0.1915, \delta=0.83$
cc-pv5z: basis set for d orbitals with cc-pv5z: basis set for d orbitals with additional functions

ECP2SDF			
\mathbf{S}	\mathbf{P}		
$\mathbf{3 9 2 , 1 6 9 5 5}$	$\mathbf{9 6 , 6 2 5 4 1 7}$		
$\mathbf{7 7 , 6 7 6 3 7 3}$	$\mathbf{1 9 , 8 4 5 6 2}$		
$\mathbf{1 5 , 3 8 5 2 3 0}$	$\mathbf{4 , 0 7 6 0 1 2}$		
3,047327	0,837158		
0,603579	0,17941		
0,069138	0,052079		
0,026502	0,019172		
$\mathbf{0 , 0 1 0 1 5 9}$	$\mathbf{0 , 0 0 7 0 5 8}$		
$\mathbf{0 , 0 0 3 8 9 4}$	$\mathbf{0 , 0 0 2 5 9 8}$	\quad	$\mathbf{c c - p v 5 z}$
:---:			
\mathbf{D}			
$\mathbf{3 , 7 5 1 9 4 8}$			
$\mathbf{1 , 9 7 8 3 0 0}$			
$\mathbf{1 , 0 4 3 1 0 3}$			
0,55000			
0,290000			
0,140000			
0,061000			
$\mathbf{0 , 0 2 6 5 7 9}$			

Usage of the MOLPRO package
CASSCF (Complete Active Space Self-Consistent-Field) MCSCF (Multiconfiguration SCF

Results

The numerical values of the potential energies of thirteen singlet and thirteen triplet tates relative to the $2 \mathrm{~s}+2 \mathrm{~s}$ asymptote have been calculated for nuclear separations of $3.2 \leq R \leq 80.0 a_{0}$. Our present calculations cover all electronic states arising from the six owest asymptotes $2 \mathrm{~s}+2 \mathrm{~s}, 2 \mathrm{~s}+2 \mathrm{p}, 2 \mathrm{~s}+3 \mathrm{~s}, 2 \mathrm{p}+2 \mathrm{p}, 2 \mathrm{~s}+3 \mathrm{p}, 2 \mathrm{~s}+3 \mathrm{~d}$) and asymptotic energie
are shown and compared with alternative results in the table below

	Present	Ref. [1]	Ref. [2]
$2 s+2 p$	14916	14938	14904
$2 s+3 s$	27201	27209	27206
$2 p+2 p$	29822	29876	29808
$2 s+3 p$	30931	31078	30925
$2 s+3 d$	32113		31283

The adiabatic potential - energy curves for all states are shown in figures. We obtain very
good agreement with Schmidt - Mink et al. theoretical results, so we consider that our potential - energy curves for states corresponding to the asymptotes $2 p+2 p$ and $2 s+3 p$ are eliable.
The adiabatic potential-energy curves of the $L i_{2}$ and $L i_{2}^{+}$systems are very important for the spectroscopy of cold atoms and molecules, identification of the observed satellite bonds and
\square
Acknowledgments

We gratefully acknowledge helpful discussions with prof. E. Czuchaj

References

1) I. Schmidt-Mink, W. Müller, W. Meyer, Chem. Phys. 92, 263 (1985)
2) S. Bashkin, J.O. Stoner Jr, Atomic energy levels and grotian diagrams, Vol. 1 (NorthHolland, Amsterdam, (1975)
3) P. J. Knowles, H. J. Werner, MOLPRO 2000.1 package
4) D. D. Konowalow, M. L. Olson, J. Chem. Phys. 71, 450 (1979)
5) M. L. Olson, D. D. Konowalow, Chem. Phys. 21, 393 (1977)
6) N. Bouloufa, P. Cacciani, R. Vetter, A. Yiannopoulou, F. Martin, A.J. Ross, J. Chem. Phys. 114, 8445 (2001)
${ }^{7}$) S. Magnier, S. Rousseau, A. R. Allouche, G. Hadinger, M. Aubert-Frecon, Chem. Phys. 246, 57 (1999)
7) P. Cacciani, V. Kokoouline, N. Bouloufa, F. Masnou-Seeuws, R. Vetter Phys. Rev, A 68 042507 (2003)
8) E. R. I. Abraham, N. W. M. Ritchie, W. I. McAlexander, R. G. Hulet J. Chem. Phys. 103, 7773 (1995)
9) M. Marinecou, A. Dalgarno, Phys. Rev. A 52,311 (1995)
10) C. Chin, R. Grimm, Phys. Rev. A 69, 033612 (2004)

Comparison with Experiment

CONTACT WITH AUTHORS

