Calculation of adiabatic potentials of Li₂⁺ J. Wilczyński, P. Jasik and J. E. Sienkiewicz

Katedra Fizyki Teoretycznej i Informatyki Kwantowej, Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk, Polska

All calculations reported in this poster were performed by means of the MOLPRO program package [9]. The core electrons of Li atoms are represented by pseudopotential ECP2SDF [10]. The basis for the *s* and *p* orbitals, which comes with this potential is enlarged by functions for *d* and *f* orbitals given by O. Ross [11] and assigned by ROOS. Additionally, our basis set was augmented by three *s* short range correlation functions (392.169555, 77.676373, 15.38523), three *p* functions (96.625417, 19.845562, 4.076012) and three *d* functions (10.495627, 3.673469, 1.285714). Also, we added to the basis a set of nine diffused functions: three *s* functions (0.010159, 0.003894, 0.001493), three *p* functions (0.007058, 0.002598, 0.000956) and three *d* function (0.006753, 0.002364, 0.000827). We checked the quality of our basis set performing the CI calculations for the ground and several excited states of isolated lithium atom. The calculated Li_2^+ adiabatic potentials correlate to the (2*s*) ground atomic asymptote and (2*p*), (3*s*), (3*p*) and (3*d*) excited atomic asymptotes. The comparison of experimental and theoretical asymptotic energies for different states is shown in Table 1. The spin-orbit coupling (SO) and core-core polarization effect contribute insignificant part to energy of our system, so we do not take them into consideration in our calculations. The potential energy curves for Li_2^+ are calculated using the complete-active-space selfconsistent-field (CASSCF) method to generate the orbitals for the subsequent CI calculations.

Table 1. Comparison of asymptotic energies with other theoretical and experimental results.Energies are shown in a.u. units.

Dissociation limit	Bashkin (exp.) [12]	Present work	Magnier (theory) [3]		
$Li^+ + Li(2s)$	-0.198142	-0.198101	-0.198107		
$Li^+ + Li(2p)$	-0.130235	-0.130172	-0.130200		
$Li^+ + Li(3s)$	-0.074182	-0.074188	-0.074299		
$Li^+ + Li(3p)$	-0.057236	-0.057390	-0.057303		
$Li^+ + Li(3d)$	-0.055606	-0.055523	-0.055570		
$Li^+ + Li(4s)$	-0.038615	-0.055439	-0.038672		
$Li^+ + Li(4p)$	-0.039747	-0.038762	-0.032013		

Calculations of the adiabatic potential energy curves are performed for the internuclear separation R in the range from $2 a_0$ to $100 a_0$ with the various steps adjusted to the internuclear distance.

Spectroscopic parameters

Fig. 1. Comparison of the ground and the first excited molecular state correlating to $Li^+ + Li(2s)$ asymptote with the theoretical results of Konowalow and Rosenkrantz [1] and Schmidt-Mink *et al.* [2].

Fig. 2. Adiabatic potential energy curves for the ground and 4 excited states in the symmetry ${}^{2}\Sigma_{g}^{+}$ of the Li_{2}^{+} molecule correlating to the $Li^{+}+Li(2s)$, $Li^{+}+Li(2p)$, $Li^{+}+Li(3s)$, $Li^{+}+Li(3p)$ and $Li^{+}+Li(3d)$ asymptotes.

Fig. 6. Adiabatic potential energy curves for all calculated by us states of the Li_2^+ molecule correlating to the $Li^+ + Li(2s)$, $Li^+ + Li(2p)$, $Li^+ + Li(3s)$, $Li^+ + Li(3p)$ and $Li^+ + Li(3d)$ asymptotes.

Conclusion

We have calculated the adiabatic potential energy curves of the lithium ion dimer using CASSCF/MRCI method. Comparisons with available lowly-lying theoretical and experimental curves provide almost perfect agreement. For the first time we present spectroscopic parameters for three states $3^2\Sigma_u^+$, $4^2\Sigma_u^+$ and $2^2\Pi_g$ previously known as repulsive potentials (Table 2.). We obtained these adiabatic potential energy curves with minima, because all our states were calculated for large internuclear separations R (up to 100 a_0). All of our new minima are very shallow and very wide: $3^2\Sigma_u^+ \cdot R_e = 19.492 a_0$ and $D_e = 162 cm^{-1}$; $4^2\Sigma_u^+ \cdot R_e = 23 a_0$ and $D_e = 383.5 cm^{-1}$; $2^2\Pi_g \cdot R_e = 19.144 a_0$ and $D_e = 349 cm^{-1}$. In Fig. 7. we present these minima near their equilibrium positions which are lain in the large distance on the internuclear separations scale.

Equilibrium positions R_e and depths of the potential wells D_e are obtained using cubic spline approximation to the calculated potentials around their equilibrium positions. Spectroscopic parameters ω_e and T_e are calculated by solving the Schrödinger equation with calculated adiabatic potentials. These values are shown in Table 2. As it is seen, overall agreement of all our spectroscopic constants and other theoretical and experimental data is very reasonable.

Table 2. Spectroscopic parameters R_e (Å), D_e , ω_e and T_e (cm^{-1}) for the ground and excited states of Li_2^+ molecule.

State	R_e	D_e	ω_e	T_e
$1^2 \Sigma_g^+$				
Exp.[5, 4]	3.110	10464(6)	262(2)	0
Exp.[6]	3.032	10807	263.45	0
Theory[2]	3.099	10441	263.76	0
Theory[1]	3.127	10324	-	0
Theory[3]	3.122	10466	263.08	0
Present work	3.093	10498	263.39	0
$2^2 \Sigma_a^+$				
Theory[2]	6.654	2390	82.94	22987
Theory[3]	6.879	2525	84.16	22844
Present work	6.819	2516.5	79.04	22800
$3^2\Sigma_a^+$				
Theory[3]	11.113	3143	56.62	34496
Present work	10.947	3058	57.90	34533
$4^2\Sigma_{\tilde{a}}^+$				
g Theory [3]	16.404	1724	22.14	39644
Present work	16.600	1512	24.03	39768
$1^2\Sigma^+$				
Theory[7]	9 950	90	20 10	10350
Theory[2]	10 300	90 86	20.10	-
Theory[3]	10.500	00	-	- 10376
Present work	9.942	90 89	15.92	10370
$2^{2}\Sigma^{+}$				
Theory[3]	13 229	131	13.07	25239
Present work	13.225	127.5	12.96	25156
$3^2\Sigma^+$				
Present work	19.492	162	10.94	37405
$4^2\Sigma^+_{a}$				
Present work	23	383.5	11.25	40885
$2^2 \Pi_g$				
Present work	19.144	349	12.14	40920
$1^2 \Pi_u$				
Theory[2]	3.976	2103	105.58	23277
Theory[1]	4.014	1852	-	-
Theory[3]	4.022	2100	108.26	23270
Present work	3.981	2133	105.25	23197
$2^2 \Pi_u$				
Theory[3]	9.631	3330	50.79	38039
Present work	9.107	3008	60.06	38285
$1^2 \Delta_g$				
Theory[3]	9.578	324	28.14	41425
Present work	repulsive potential			

Fig. 3. Adiabatic potential energy curves for 5 excited states in the symmetry ${}^{2}\Sigma_{u}^{+}$ of the Li_{2}^{+} molecule correlating to the $Li^{+} + Li(2s)$, $Li^{+} + Li(2p)$, $Li^{+} + Li(3s)$, $Li^{+} + Li(3p)$ and $Li^{+} + Li(3d)$ asymptotes.

Fig. 4. Adiabatic potential energy curves for 3 excited states in the symmetry ${}^{2}\Pi_{g}$ of the Li_{2}^{+} molecule correlating to the $Li^{+} + Li(2p)$, $Li^{+} + Li(3p)$ and $Li^{+} + Li(3d)$ asymptotes.

Fig. 7. Three states $3^2\Sigma_u^+$, $4^2\Sigma_u^+$ and $2^2\Pi_g$ with previously unknown minima near their equilibrium positions.

References

References

[1] D. D. Konowalow and M. E. Rosenkrantz, Chem. Phys. Lett. 61, 489 (1979).

[2] I. Schmidt-Mink, W. Müller and W. Meyer, Chem. Phys. 92, 263 (1985).

[3] S. Magnier, S. Rousseau, A. R. Allouche, G. Hadinger and M. Aubert-Frécon, *Chem. Phys.* 245, 57 (1999).

[4] R. A. Bernheim, L. P. Gold and T. Tipton, Chem. Phys. 78, 3635 (1983).

[5] R. A. Bernheim, L. P. Gold, T. Tipton and D. Konowalow, Chem. Phys. Lett. 105, 201 (1984).

[6] M. W. McGeoch and R. E. Schlier, Chem. Phys. Lett. 99, 347 (1983).

[7] P. Jasik and J. E. Sienkiewicz, *Chem. Phys.* 323, 563 (2006).

[8] P. Jasik and J. E. Sienkiewicz, SPIE Proceedings 5849, 82 (2005).

[9] MOLPRO is a package of *ab initio* programs written by H. J. Werner and P. J. Knowles with contributions from R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone and T. Thorsteinsson.

Fig. 5. Adiabatic potential energy curves for 3 excited states in the symmetry ${}^{2}\Pi_{u}$ of the Li_{2}^{+} molecule correlating to the $Li^{+} + Li(2p)$, $Li^{+} + Li(3p)$ and $Li^{+} + Li(3d)$ asymptotes.

[10] P. Fuentealba, H. Preuss, H Stoll and L. Von Szentply, Chem. Phys. Lett. 89, 418 (1982).

[11] P. O. Widmark, P. A. Malmqvist and B. O. Roos, Theor. Chim. Acta 77, 291 (1990).

[12] S. Bashkin, J. O. Stoner Jr., Atomic enenrgy levels and grotrian diagrams, Vol. 1, North-Holland, Amsterdam, (1975).

Acknowledgments

This scientific work is financed by the Ministry of Science and Higher Education from budget of science for 2006 - 2008 years. This research is also partially supported by ESF Network -CATS (Collisions in Atom Traps).

Contact with authors

Jacek Wilczyński e-mail: j.wilczynski@gdansk.so.gov.pl Patryk Jasik e-mail: p.jasik@mif.pg.gda.pl Józef E. Sienkiewicz e-mail: jes@mif.pg.gda.pl