
Radiation Physics and Chemistry 68 (2003) 301–305

Relativistic multiconfiguration method in low-energy
scattering of electrons from xenon atoms

P. Sytya,*, J.E. Sienkiewicza, S. Fritzscheb

aDepartment of Theoretical Physics and Mathematical Methods, Gda !nsk University of Technology, ul. Narutowicza 11/12,

80-952 Gda !nsk, Poland
bFachbereich Physik, Universit .at Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

Abstract

The elastic scattering of slow electrons from xenon atoms is calculated in a relativistic multiconfiguration method.

The correlation effects responsible for target polarization are treated in a relativistic configuration-interaction scheme

that allows for dynamics effects. Calculations of the spin polarization and differential cross sections are discussed and

compared with experimental and other theoretical data.
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1. Introduction

In the last years, the scattering of slow electrons by

atoms has been extensively studied by both experimen-

talists and theoreticians. From the theoretical point of

view, the difficulties arise from the need for precise

calculations of target polarization. Present calculations

have been performed by using the relativistic version of

the multiconfiguration and CI approach (Sienkiewicz

et al., 1995; Sienkiewicz and Baylis, 1997). The method

allows for describing the polarization of different target

states due to the incoming electron charge through

bound relativistic configuration expansions. The polar-

ization is different for different kinetic energies of the

incident electron, and thus dynamic effects are taken

into account. The relativistic phase shifts obtained by

this method are used to calculate spin polarization and

differential cross sections of electron scattering by xenon

in its ground state at a few selected energies.

A review of the theory used in computations is

presented in Section 2 and the computational procedure

is described in Section 3. Our results are presented and

compared with experiment and other available calcula-

tions in Section 4. At last, the conclusion remarks are

included in Section 5.

2. Theory

Let us start from the relativistic scattering equation

HNþ1C ¼ EC: ð1Þ

Here, HNþ1 is the ðN þ 1Þ-electron Dirac–Coulomb

Hamiltonian operator

HNþ1 ¼
XNþ1
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and C is the scattering state wavefunction including one

electron in the continuum.

The total energy of the scattering system is

E ¼ Ea þ E; ð3Þ

where Ea is the energy of the N-electron target and E is

the kinetic energy of the scattered electron.
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To obtain the approximate solution of our scattering

equation (1), we use the multiconfiguration Dirac–Fock

method. In this method, an atomic state function (ASF)

is approximated by a linear combination of configura-

tion symmetry functions (CSFs),

FaðPaJaMaÞ ¼
Xnc
r¼1

barfrðN; grJaMaPaÞ; ð4Þ

where Pa is the parity of the atomic state, Ja is the total

angular momentum and Ma the magnetic number, and

nc—the number of CSFs. The CSFs are eigenfunctions

of the parity and the total angular momentum operators

and are associated with the set of the quantum numbers

(PJM). They are built from antisymmetrized products

of a common set of orthonormal Dirac orbitals

unkmðrÞ ¼
1

r

PnkðrÞwkmðr=rÞ

iQnkðrÞw�kmðr=rÞ

 !
; ð5Þ

where Pnk and Qnk are the large and small components

of the Dirac radial spinor, respectively, and the spin-

angular function is given by

wkmðr=rÞ ¼
X

s¼71=2

/jmjl; 1
2
;m � s; sSY m�s

l ðr=rÞws1=2: ð6Þ

Here, /jmjl; 1
2
;m � s; sS is a Clebsch–Gordan coeffi-

cient, Y m�s
l ðr=rÞ is a spherical harmonic, ws1=2 is the spin

eigenfunction, k is the relativistic angular quantum

number, k ¼ 7ðj þ 1
2
Þ for l ¼ j7 1

2
; where j is the total

angular momentum and l is the orbital quantum

number.

The symbol gr in Eq. (4) denotes the occupation and

the coupling of the electron subshells, and thus allows us

to distinguish CSFs of the same global symmetry. The

radial parts of the functions frðN; grJaMaPaÞ as well as
the mixing coefficients bar are generated in the SCF

process with respect to the Dirac–Coulomb Hamilto-

nian.

We express the total wave function of the (N þ 1)-
electron scattering system in the form (Burke et al.,

1971)

CðPJM;N þ 1Þ ¼A
Xma

a¼1

caFaðPaJaMa;NÞukðaÞmðaÞ

þ
Xmd

j¼1

djfjðPJM;N þ 1Þ: ð7Þ

The first term on the right-hand side of the above

equation is the antisymmetrized product of the bound

configuration states of the target atom and one-electron

continuum spinors ukðaÞmðaÞ:
The continuum Dirac spinor is defined as

ukmðrÞ ¼
1

r

PkðrÞwkmðr=rÞ

iQkðrÞw�kmðr=rÞ

 !
; ð8Þ

where now Pk and Qk refer to continuum orbitals.

The continuum orbitals are solutions of the Dirac–

Fock equations
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Here, c is the speed of light, and E is the kinetic energy

of the scattered electron. Direct and exchange potentials,

V ðrÞ and X ðrÞ; are given by Grant et al. (1980). These
equations are solved by the method of outward

integration.

The first sum in Eq. (7) ranges over all ma open

channels Fa: In the case of elastic scattering, we have
only one open channel, thus ma ¼ 1:
The second sum in expansion (7) accounts for

correlation effects between the scattered electron and

the bound target electrons. In our approach, the

(N þ 1)-electron configuration state functions fj are

constructed from bound-state orbitals of the target

atoms, including excitations of some of the core

electrons into a set of virtual orbitals.

In the case of elastic scattering, we obtain the

coefficients dj by solving the system of md linear

equations

/AFukmjHNþ1 � Ejfj0S

þ
Xmd

j¼1

dn

j /fj jHNþ1 � Ejfj0S ¼ 0; j0 ¼ 1;y;md :

ð11Þ

This set of equations is derived by applying the

condition that the functional /CjHNþ1 � EjCS must

be stationary with respect to variations of the dj

coefficients.

The solution of Eq. (11) determines new direct and

exchange potentials and, through the Dirac–Fock

equations (10), an improved continuum scattering

orbital. This, in turn, can be used in a new calculation

of coefficients dj : The procedure is iterated to self-

consistency.

Now let us define two complex scattering amplitudes

f ðWÞ (the direct amplitude) and gðWÞ (the ‘‘spin-flip’’
amplitude), according to Kessler (1985):

f ðWÞ ¼
1

2ik

X
l

fðl þ 1Þ½expð2idþl Þ � 1


þ l½expð2id�l Þ � 1
gPlðcos WÞ; ð12Þ

gðWÞ ¼
1

2ik

X
l

½expð2id�l Þ � expð2id
þ
l Þ
P

1
l ðcos WÞ; ð13Þ

where W is the scattering angle, Plðcos WÞ and P1l ðcos WÞ
are the Legendre polynomial and the Legendre
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associated function, respectively. The d7l are the relati-

vistic phase shifts, where the index þ refer to the solution

with k ¼ �l � 1 and � to the solution with k ¼ l:
Having the scattering amplitudes, we can calculate the

set of observables—the differential cross section

sðWÞ ¼ jf ðWÞj2 þ jgðWÞj2 ð14Þ

and the spin polarization parameters

SðWÞ ¼
iðf ðWÞgðWÞn � f ðWÞngðWÞÞ

sðWÞ
; ð15Þ

TðWÞ ¼
jf ðWÞj2 � jgðWÞj2

sðWÞ
; ð16Þ

UðWÞ ¼
f ðWÞgðWÞn þ f ðWÞngðWÞ

sðWÞ
: ð17Þ

These parameters are not independent, since S þ T þ
U ¼ 1:

3. Computational procedure

To represent the atomic ground state of the xenon

atom, we included 4582 relativistic configuration state

functions with the total angular momentum 0 and even

parity. These configuration states have been obtained by

the excitations of one or two electrons from the 5s and

5p subshells into the set of virtual orbitals 5d 6s 6p 6d

7s 7p 8s 8p 9s 10s: The calculated eigenenergy of the
ground state of xenon is �7438.98347 Hartree. The
contribution from the relativistic (transverse) Breit

interaction between electrons has been added to the

Hamiltonian matrix as a perturbation, to obtain a full

Dirac–Coulomb–Breit matrix.

The atomic ground-state function and the set of

configuration state functions are generated with the

atomic structure program GRASP92 written by Parpia

et al. (1996).

To construct the total scattering state C and to

generate the continuum orbitals ukm; we use the

computer code COWF developed by Fritzsche (2002).
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Fig. 1. Spin polarization at 2, 4, 6 and 10 eV against scattering angle. Solid line—present results; dashed line—present results without

target polarization; full squares—experimental results of D .ummler et al. (1995).
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The original COWF code has been improved and

modified to run on multiprocessor computers (Dziedzic

et al., 2002). The continuum orbitals are orthogonalized

to the atomic orbitals by the Schmidt orthogonalization

procedure.

The dominant contribution to the total dipole polar-

ization is from the polarization of the 5s and 5p orbitals.

In our calculations we included the dipole polarization of

the target xenon atom through the configuration-inter-

action procedure. The bound (N þ 1)-electron configura-
tion state functions that account for the dipole

polarization are built of atomic orbitals 1s; 2p;y up to

the 6d ; obtained by the relativistic multiconfiguration
self-consistent field method.

Relativistic phase shifts d7l are obtained by compar-

ing the numerical solutions with the asymptotic ones at

large r:

PkðrÞ
r

BjlðkrÞ cos d7l � nlðkrÞ sin d7l : ð18Þ

where jlðkrÞ and nlðkrÞ are the Bessel and Neumman
spherical functions, respectively.

We calculated the relativistic phase shifts d7l for l ¼
0; 1;y; 10: For higher values of the orbital momentum
(up to l ¼ 50), we estimated phase shifts by using the

non-relativistic formula of Ali and Fraser (1977).

4. Results

Fig. 1 shows our results for spin polarization at

impact energies of 2, 4, 6 and 10 eV; together with the
experimental data of D .ummler et al. (1995). For

comparison, approximations without target polarization

are also presented. In general, our results stay in a good

agreement with experimental data. The remaining

discrepancies, especially for 6 eV; can be explained by
neglecting the influence of inelastic channels in our

calculations.

In Fig. 2 we present our results for 10 eV again, but

now compared with more theoretical and experimental

data than included on the previous figure. The

theoretical ones are given by Sienkiewicz et al. (1995)

and McEachran and Stauffer (1986). The experimental

data are given by D .ummler et al. (1995) and Klewer et al.

(1979). For the angles up to the 80�; our line is closer to
the latter experimental points, and for higher angles, to

the results of D .ummler et al. (1995).

In Fig. 3 we show our result for differential cross

section at a lower energy, 0:67 eV: We compare our
result with theoretical and experimental data by Gibson

et al. (1988) and the other experimental data given by

Weyhreter et al. (1988). One can see that our method is

suitable even for energies of the scattered electron below

1 eV:

5. Conclusions

Relativistic multiconfiguration calculations have been

performed for the elastic scattering of slow electrons by

xenon. The method used in calculations allows for

taking into account dynamic effects in a precise ab initio

manner through the ðN þ 1Þ-electron bound configura-
tions. The remaining differences between theoretical and
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Fig. 2. Spin polarization at 10 eV against scattering angle. Solid line—present results; dashed line—theoretical results of Sienkiewicz
et al. (1995); dotted line—theoretical results of McEachran and Stauffer (1986); full squares—experimental results of D .ummler et al.

(1995); full triangles—experimental results of Klewer et al. (1979).
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experimental results arise mainly from neglecting

inelastic channels in our computations.
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