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Abstract

We present a computer code implementing the J-matrix method for a scattering prob-
lem on the potential vanishing faster than Coulomb one. Non-relativistic as well as rela-
tivistic cases are implemented. In this version of the program, scattering potential can be
easily modelled as the square-well, as the truncated Coulomb potential or may be given by
any analytical formula. Specific properties of the J-matrix method allow for calculating
phase shifts for many projectile energies with relatively small computational time.
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PROGRAM SUMMARY

Title of program: JMATRIX

Program obtainable from: http://www.mif.pg.gda.pl/homepages/sylas

Licensing provisions: None.

Programming language used: ANSI standard Fortran 90. Some numerical libraries written in
Fortran 77 are also used.

Requirements for compiling program from sources: Computer with Fortran 90 (or newer, such
as Fortran 95 or Fortran 2003) compiler.

Binary executables provided: PC Linux and Microsoft Windows. However, building program
from sources is strongly recommended.

Installations: Gdańsk University of Technology (PC – Linux, Windows).

Operating systems under which the program has been tested: Linux, IBM AIX, Microsoft Win-
dows.
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Memory required to execute with typical data: 1 – 30 MB (strongly dependent on the maximal
basis size N used in calculations). Additionally, approximately 20 MB of hard disk space is
required for the output files.

No. of processors used: 1

Has the code been vectorised or parallelized? No.

Distribution format: Compressed tar file.

No. of bytes in distributed program, including test data, etc.: Uncompressed – approx. 2 MB
(sources: 200 kB; binaries: 1.8 MB).

Nature of physical problem: Projectile of a given energy is elastically scattered on the radial
potential vanishing faster than the Coulomb one. Our task is to obtain phase shift of the wave
function of the scattered projectile. These phase shifts can be used in calculations of differential
cross sections for elastic scattering, and spin polarization of the projectile.

Method of solution: Physical scattering problem is replaced by well-defined model which is
solved exactly. Radial kinetic operator is tridiagonal in some suitable bases, such as Gaussian
or Laguerre basis set. Scattering potential (vanishing faster than the Coulomb one) is trun-
cated in N elements of the selected basis. Then, using some algebraic methods, one can find
formula for tangent to the approximate phase shift, tan δN . We expect that for N → ∞, this
approximate value converges to the exact value, tan δ.

Restrictions on the complexity of the problem: In the presented code, the maximum basis size
N is limited for the following reasons: (1) When basis size N approaches value about 500, the
convergence process fails. It seems that this fact is a consequence of loss of preciseness in numer-
ical integration. (2) For Laguerre basis, maximum value of N is 497, due to reaching the largest
number allowed for the double precision variables. For Gaussian basis, there is no such restric-
tion. In future versions of the program these restrictions will be removed by implementing more
precise and stable integration procedures and applying some numerical techniques into the code.

Typical running time: 1 – 180 minutes, strongly dependent on basis size N and scheme used
in computations (relativistic or non-relativistic).

Unusual features of the program: At the end of its execution, program saves calculated elements
of truncated potential to a file. This allows for repetition of calculations for different projectile
energies with a relatively small computational time. It is possible to create data base of these
files for a different parameters for a future use.

LONG WRITE-UP

1 Introduction

The J-matrix method is an algebraic method in quantum scattering theory. It is based on fact
that the radial kinetic energy operator is tridiagonal in some suitable bases. Non-relativistic
version of the method was introduced in 1974 by Heller and Yamani [1], [2] and developed

2



by Yamani and Fishman [3] a year after. Recently, relativistic version was introduced by
Horodecki [4] and extended by Alhaidari et al [5]. Theoretical basis of the method is described
in section 2.1. Presented program JMATRIX implements both non-relativistic and relativistic
versions of the method. In general, program allows for calculations of scattering phase shifts in
all cases when the scattering potential is given through the analytical formulas. However, the
main task of the present work was to perform some calculations for a relatively simple cases, for
the purpose of testing the relativistic version of the method, as it has never been (numerically)
tested before. For a start, we selected the scattering potential modelled as square-well and
a truncated Coulomb potential. Performed test calculations of scattering phase shifts show,
that: (i) numerical phase shifts converge to results obtained using an analytical formula, as
we increase size of basis used to truncate scattering potential, (ii) non-relativistic limit in
relativistic computations is correctly satisfied.

2 Theoretical method

2.1 The J-matrix method

In this section we give only a short review of the J-matrix theory of scattering, but it should be
sufficient for understanding the main idea of the method. Detailed description of the method
can be found in publications [1] – [6].

Our task is to find an approximate solution of the scattering problem on the radial potential
V = V (r) vanishing faster than the Coulomb one. Let us replace this scattering potential by a
truncated potential operator:

V N = P †
NV PN (1)

with the generalized projection operator

PN =
N−1
∑

n=0

∣
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∣φl
n

〉 〈
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∣

∣

∣ . (2)

Then, using expansion of the solution of the new problem in the basis {φl
n}, one can find

that tangent of approximated phase shift is given by the formula

tan δN = −sl
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N(k)
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where sl
n and cl

n are coefficients of sine-like and cosine-like solutions of the following equation
(
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Here, k ≡
√

2ME
h̄2 is the wave number related to the energy E and mass M of the projectile. Basis

set {φ̄l
n} is biorthonormal to set {φl

n} with respect to unitary scalar product, i.e.
〈

φ̄l
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n

〉

= δmn,
where δmn is, as usual, Kronecker delta.

JN,N−1 is an element of the following matrix
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. (5)

In some suitable bases, such as Gaussian or Laguerre set, the above matrix is tridiagonal
(and is called Jacobi or J-matrix). This enables us to find coefficients sl

n and cl
n, using three-

term recursion relation between them and the J-matrix (see [2] for details). The explicit forms of
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Table 1: Elements of Laguerre and Gaussian basis sets and elements of expansion of sine-like
and cosine-like solutions in these bases.

these coefficients as well as elements of basis sets are collected in Table 2.1. In the table, L(α)
n and

C(α)
n are Laguerre and Gegenbauer polynomials, respectively; 2F1 and 1F1 are hypergeometric

functions, λ > 0 is a scaling parameter (λ 6= 0.5).
In above formulas, N is the quantity of base functions φl

n used to truncate scattering poten-

tial, gN−1,N−1(E) is a matrix element of the inverse of the truncated operator P †
N

(

H0 + V N − k2

2

)

PN ,
restricted to the N -dimensional space, where it doesn’t vanish. In short, this matrix can be
viewed as the matrix approximating the Green function.

For N → ∞, what is connected with reduction of inaccuracy in approximating of the scatter-
ing potential, tan δN should converge to the exact value tan δ, and, simultaneously, approximate
δN should approach the exact scattering phase, δ.

In the relativistic case we have very similar formula for tangent of the approximated phase
shift:

tan δ̃N = −
sl

N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)sl
N(k̃)

cl
N−1(k̃) + 2ε

k̃
G++

N−1,N−1(E)JN,N−1(k̃)cl
N(k̃)

. (6)

Here, we have the same coefficients of the expansion and J-matrix element as in the non-

relativistic case, only taken with the relativistic number k̃ ≡
√

(E−Mc2)(E+Mc2)

ch̄
, related to the

total energy E = E + Mc2. See [4] for detailed explanation of the symbol G++
N−1,N−1. As in

the non-relativistic case, it can be viewed as a matrix element of the inverse of some truncated
operator, but here restricted not to N (as it is in the non-relativistic case), but to the 2N -

dimensional space. To complete definitions, ε ≡
√

E−Mc2

E+Mc2
.

2.2 Test case – square well

Here we shall consider spherically symmetric potential V (r) defined by the square-well with
respect to the radial coordinate:

V (r) =











0 for r ∈ (0, a)
V0 for r ∈ [a, b)
0 for r ∈ [b,∞)

.

and is defined by three parameters: (i) depth V0, (ii) left bound a, (iii) right bound b.
We will consider only the relativistic case, in which the analytical formula for tangent of

the phase shift can be simply found to be

tan δ̃ =
B̃

Ã
(7)
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where the numbers A, B (depending on the energy of the projectile, the relativistic number κ,
and parameters of the potential) can be constructed as coordinates of the following vector

[

Ã

B̃

]

= N(b)k̃,κM(b)k̃′,κN(a)k̃′,κM(a)k̃,κ

[

1
0

]

, (8)

where the 2× 2 matrices M and N , depending on the position, are defined with aid of Ricatti-
Bessel and Ricatti-Neumann functions jl(r), nl(r) as follows

M(r)k̃,κ =

[

jl(kr) −nl(kr)

∓ε(k̃)jl±1(k̃r) ±ε(k̃)nl±1(k̃r)

]

, (9)

N(r)k̃,κ =

[

±ε(k̃)nl±1(k̃r) nl(k̃r)

∓ε(k̃)jl±1(k̃r) jl(k̃r)

]

, (10)

with the relativistic quantum number κ = l (κ = −l − 1) for upper (lower) sign of indices in
the above formula. Here, k̃′ is defined in the same way as k̃ (defined in previous section), but
with shifted energy E ′ = E + V0 + Mc2 instead of E. The number ε in the above matrices is
defined in the same way as in the previous section.

3 Numerical computations

3.1 A general view of the program

We expect that for N → ∞, approximate phase shift δN (or δ̃N in the relativistic case) converges
to the exact value δ (or δ̃). Using presented program, one is able to study this convergence by
systematic calculations of phase shifts for progressively increased basis size N . Moreover, in
the case of square-well potential, numerical results obtained in relativistic calculations can be
compared with result obtained using analytical formula (7).

The program computes all required mathematical functions (such as Gegenbauer and La-
guerre polynomials, hypergeometric functions, Bessel, spherical Bessel, Neumann and spherical
Neumann functions and their derivatives, gamma function and more) to evaluate basis func-
tions φl

n and coefficients sl
n and cl

n (see Table 2.1). Then the program truncates the scattering
potential in selected basis by numerical integration, and forms the matrix approximating Green
function. This matrix is constructed as sum of the matrix of elements of truncated potential
and the elements of the J-matrix. Then program inverses this matrix approximating Green
function by diagonalisation (using some orthogonal matrix; in the present code this orthogonal
matrix is a matrix of eigenvectors of the Green matrix) and finally, computes approximate phase
shift for given number N . Also, there has been written an additional procedure to calculate
phase shifts using an analytical formula for potentials with a shape of potential square-well,
using relativistic formulas from section 2.2

Greater part of the mathematical procedures and functions used in program have been writ-
ten by authors using useful formulas and relations included in [7] and [8]. Some procedures (for
Bessel, Neumann and Gamma functions, for numerical integration and for searching eigenvalues
and eigenvectors of real, symmetric matrix) have been taken from public Fortran 77 libraries.

In the relativistic case, most of the formulas are written as function of the total energy of
the projectile, E. For user convenience and for unification with the non-relativistic case, we
used a rescaled kinetic energy E in our code, instead the total energy E. Due to this rescaling,
implemented formulas are slightly different than written in section 2.1. In the non-relativistic
case such rescaling was not necessary, because in this case all formulas are written as function
of the kinetic energy from the beginning.
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Coefficients sl
n and cl

n for N = 1 and N = 2 have been calculated using explicit formulas
(see Table 2.1), but for N > 2, to avoid numerical instabilities, using three-term recursion
relation (see [2]). In these formulas, factorials and gamma functions for a big arguments appear.
To minimize the numerical errors, these functions have been replaced by exponents of their
logarithms. This move was possible only in the case of Gaussian basis; in the case of Laguerre
basis, explicit formulas have been used in calculations, so the maximum number of N is limited
to 497 in this case.

In the J-matrix method there are many integrals to be calculated, especially in the relativis-
tic case. As they are used to truncate the scattering potential (1), their quantity is N×N in the
non-relativistic case, and 2N ×2N in the relativistic one. Calculation of these integrals has the
major contribution in the computational time of the present code. To minimize their quantity
(and therefore overall time of computations), we applied a few tricks, such as utilization of
the symmetry of the J-matrix and properties of the scattering potential. Moreover, integrals
calculated in each iteration are saved to be used in the next iterations. The current integration
method is the Double Exponential (DE) Transformation method.

Once the phase shift for given energy and requested values of N have been calculated,
program starts calculations of phase shifts for another projectile energies (defined in the input
file – see section 3.3), with using previously calculated elements of the truncated potential, as
they do not depend on energy of the projectile. Such approach allows for saving great amount
of time, because – as it has been noticed before – calculations of the elements of the truncated
potential are the most time-consuming operations in the present code. Additionally, these
elements are saved to the external file on the hard disk, so it is possible to use them in next
runs of the program, i.e. for calculating phase shifts for yet another energies of the projectile.

3.2 Structure of the program and compilation

After unpacking provided gzipped tar file, directory jmatrix is created, and three directo-
ries within it: jmatrix/doc with documentation, jmatrix/source, where all source files are
stored, and jmatrix/bin, where executables created during compilation process are placed,
together with input and output files. For a clarity, source code has been splitted into several
files. Every file contains code responsible for a specific task, i.e. procedures included in file
jm specfun.f90 calculate some special functions used in calculations, jm v.f90 truncates the
scattering potential, jm analytic.f90 calculates the analytical value of phase shift in case of
potential square-well, etc. The main segment of the program is placed in the file jmatrix.f90.
There are two special modules: jm constants.f90 and jm global.f90. The first one defines
some constants and user types used in program, the second one defines global variables and
controls calculations.

Program is written in ANSI Fortran 90, so it is expected to be compiled with any Fortran
90 as well as Fortran 90 or Fortran 2003 compilers without any hassles. Additionally, program
uses some numerical libraries written in Fortran 77, they also can be successfully compiled with
use of the same F90 or newer compiler. In some rare cases it is convenient to use separate F90
and F77 compilers, i.e. when using VAST/f90 compiler.

To make compilation as easy as possible, it is controlled through the properly prepared
makefile. Before compilation, user should modify this makefile and specify the F77 and F90
compilers, together with flags passed to the compilers. After editing is complete, compilation is
started by typing the command make inside the directory jmatrix/source. In case of succesfull
compilation, the executable file jm (or jm.exe in Windows) will be created and moved to
directory jmatrix/bin. For user’s convenience, we prepared and included a set of makefiles
for various compilers: Portland Group PGI, VAST/f90, Intel Fortran Compiler and Compaq
Visual Fortran. These makefiles are stored in the same directory as sources.
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See provided readme file for more detailed description of the compilation process.

3.3 Input and output files

All calculations are controlled through the parameters read from the external file. The name
of the input file is arbitrary since program asks for it at start of execution. The default name
is jm.inp. The input file should be composed of a set of lines in the following form:
; comment

keyword = value ; comment

Blank lines, lines beginning with “;” and lines without proper keyword are ignored. Key-
words and values are case sensitive, their order in the file is arbitrary. Not all keywords are
required in all cases, this will be discussed later. Please note that there must be at least one
space around the “=” sign and before the “;” sign (except the case when whole line is a com-
ment). Below is an example of the input file containing all keywords recognized by the program.
The meanings of the particular parameters are discussed later, but they can be easily presumed
from their names and included comments.

; PROPERTIES OF THE PROJECTILE

estart = 3.0 ; Projectile energy range

eend = 4.0

estep = 0.1 ; Step size

l = 1 ; Quantum numbers

kappa = 1

; TYPE OF CALCULATIONS

lambda = 1.0 ; Scaling parameter

basis = laguerre ; Basis set (gauss, laguerre)

scheme = relativistic ; Scheme (relativistic, non-relativistic)

pot_type = well ; Potential type (well, coulomb, other)

v_light = finite ; Velocity of light (finite, infinite)

nstart = 1 ; Initial value of N

nend = 400 ; Final value of N

; OTHER PARAMETERS

screen = .T. ; Display results on screen

shift = .F. ; Shift results to range [0,pi]

; PARAMETERS OF POTENTIAL SQUARE-WELL

v0 = -1.0 ; Depth

a = 0.8 ; Left bound

b = 1.0 ; Right bound

; PARAMETERS OF TRUNCATED COULOMB POTENTIAL V(r) = - z / (r^alpha)

r0 = 1.0 ; Truncating parameter

z = 30.0 ; The z parameter

alpha = 1.0 ; The alpha parameter

Program calculates phase shifts for projectile energies in range [estart, eend] with step size
estep in a single run of the program. Energies are given in atomic units. Parameters estart

and eend are mandatory; estart should be less or equal than eend (in the latter case phase shift
will be calculated for only one energy of the projectile). When no estep is specified, program
takes estep = (eend − estart)/10. The mass of the projectile is assumed to be unitary in the
present code (what conforms i.e. to electrons), but it can be easily changed in the source file
jm global.f90. Option which will allow for change mass of the projectile will be added to the
future versions of the program.

Next, orbital quantum number l and quantum number κ, which describe the projectile have
to be specified, while κ = l or κ = −l − 1. To specify these numbers, keywords l and kappa,
respectively, should be used. If no one from the above dependencies between κ and l is not
satisfied, program stops with a proper message. This restriction does matter only in relativistic
calculations, because κ is not used in the non-relativistic scheme, so the keyword kappa is
ignored in that case.
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One can specify scaling parameter lambda. If omitted, the standard value 1.0 will be taken.
Changing this parameter should improve the convergence in some particular cases, but it is
recommended to leave this parameter untouched as its influence has not been investigated in
details yet. Moreover, due to some numerical reasons, it is not allowed to put the value 0.5 for
lambda.

J-matrix (5) can be calculated in two different basis sets, Laguerre or Gauss. This is
determined through keyword basis. It can assume two values, laguerre or gauss. Also, scheme of
computations (relativistic or non-relativistic) should be specified. If no keyword scheme is found
in the input file, calculations will be performed using the non-relativistic scheme.

Keyword pot type is responsible for kind of scattering potential used in computations. There
are two types of potentials predefined in program: square-well (value: well) and truncated
Coulomb potential (value: coulomb). The parameters of the above potentials should also be
specified in input file. If square-well is selected, the depth v0, left and right bounds (a and b,
respectively) are required (all of them in atomic units). The depth of square-well is normally a
negative number. It is allowed to put the positive number for v0, but in that case it should not
be greater than the energy of the projectile. The Coulomb potential has the form V (r) = −z/rα,
so the parameters z and alpha should be specified. Parameter r0 (in atomic units) specifies at
which r potential will be truncated, so that V (r > r0) = 0.

Moreover, program is able to use whichever scattering potential given in any analytical form,
by using the value other for keyword pot type in the input file. Requested formula describing the
potential should be specified in the adequate place in the module jm v.f90, then the program
have to be recompiled.

To verify that the relativistic results converge to the non-relativistic limit as the speed of
light approaches infinity, we introduced additional keyword, v light. Standard value is finite, it
is responsible for the constant and finite speed of light (137.036 in atomic units). By specifying
v light = infinite, one can get non-relativistic limit in relativistic computations and compare it
with pure non-relativistic calculations. This setting should not be used in real calculations, it
has been added only for testing purposes. Keyword v light is ignored in non-relativistic scheme
of calculations.

Next two parameters, screen and shift are logical-type and are responsible for displaying
(default) or not results on screen and for shifting (or not, which is default) calculated phase
shifts to range [0, π]. At last, the initial (nstart) and final (nend) values of N should be specified,
so calculations will be performed for N form range [nstart, nend] with step 1. If nstart is omitted,
it is taken as 1. When nstart = nend, calculations will be performed for only this one value
of N . It does not allow for studying the convergence, but it may be useful in case when one
need only to calculate phase shifts for different energies with use of previously saved elements
of truncated potential.

Program creates three output files which contain results of calculations. In the first file
(program asks for its name; the default name is jm.out), calculated phase shifts as function of
the basis size are saved. In the second file, calculated phase shifts as function of energy of the
projectile (for the final value of N) are saved. The name of this file is automatically chosen
to be the same as the first file, but with suffix .en. Additionally, the file saved.vn is created.
It contains the elements of the truncated potential and can be utilized, to save computational
time, in separate runs of the program. Program will utilize this file when saved informations will
correspond to the actual set of parameters, i.e. calculations are performed in the same basis,
scheme, with the same quantum numbers describing the projectile and scaling parameter, and,
of course, for the same basis size N (so adequate and the same values for nstart and nend should
be put in the input file). When these informations do not conform to current calculations or
the nstart is not equal to nend, the file saved.vn will be deleted and created for the new set of
parameters.
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Below is an (shortened) example of the first output file, with phase shifts as functions of N :
; OUTPUT FROM THE JMATRIX PROGRAM

(...)

; ANALYTICAL RESULT

; delta = 0.158163581281253

;

; NUMERICAL RESULTS: N tan(delta) delta

1 0.0001153729311281 0.0001153729306162

2 0.0016942699360635 0.0016942683149037

3 0.0084487948013789 0.0084485937789887

(...)

13 0.1377207522226093 0.1368598121024684

14 0.1547320896298930 0.1535146646821944

15 0.1751206279063803 0.1733627075052276

(...)

203 0.1623105129055408 0.1609072868221379

204 0.1640488400677350 0.1626005266770787

205 0.1650570056215622 0.1635821130890733

(...)

300 0.1621137854778999 0.1607156031262297

301 0.1615424542908467 0.1601588523320820

302 0.1605951402488267 0.1592354932033918

(...)

398 0.1595807653598821 0.1582464653476224

399 0.1597952178393117 0.1584555852164212

400 0.1599136302723107 0.1585710471988183

Below is an (shortened) example of the second output file, with phase shifts as functions of
energy of the projectile:
; OUTPUT FROM THE JMATRIX PROGRAM

(...)

; NUMERICAL RESULTS: energy tan(delta) delta

3.000000 0.1599136771879867 0.1585710929446643

3.100000 0.1596260888605002 0.1582906629904541

3.200000 0.1611806782827603 0.1598062570466153

3.300000 0.1607058305437033 0.1593433986129410

3.400000 0.1603631246415301 0.1590093028032292

3.500000 0.1611399619369947 0.1597665714411470

3.600000 0.1597165659930660 0.1583788907618623

3.700000 0.1586909568144603 0.1573786340075637

3.800000 0.1588798233241868 0.1575628557703182

3.900000 0.1573651299127394 0.1560851102673489

4.000000 0.1551291838287373 0.1539024506549712

3.4 Test case – Results and discussion

We performed some test calculations of phase shifts in scattering on the square-well potential,
using the relativistic scheme of computations, in both bases, Laguerre and Gauss. We present
a few figures illustrating convergence of the calculated phase shift to the value obtained using
analytical formulas. In Figure 1 results obtained using Laguerre basis functions are presented.
As we can see, the convergence in this basis is rather slow but systematic. Results obtained
using Gaussian basis functions are presented in Figure 2. In this case we have much faster
convergence. One can notice that the convergence in Laguerre basis set has completely different
nature if compared to convergence in Gaussian set. The convergence in Laguerre set appears to
be more stable and regular, but is slower. In Gaussian basis, we have rather a quick convergence,
but the numerical results “jump” around the analytical result.

In general, in both investigated cases it is not difficult to see that phase shifts computed
numerically converge to phase shift obtained using an analytical formula. This is clearly shown
in Figure 3, where root-mean-square deviations of numerical values from the analytical one are
presented.

Now let us see that the non-relativistic limit in relativistic calculations is properly achieved.
It is illustrated in Table 3.4. One can see, that relativistic calculations performed with substi-
tuted infinite speed of light instead of finite, give result very close to that one obtained from
non-relativistic calculations.
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Figure 1: Convergence of the phase shift versus number of Laguerre basis function N used to
truncate the scattering potential. Straight line – analytical result.

scheme speed of light δN=100

relativistic finite 0.1545573335662396
relativistic infinite 0.1545390923421738

non-relativistic — 0.1545390774387093

Table 2: Illustration of the non-relativistic limit in relativistic calculations.

4 Conclusions

In last few years the interest of the J-matrix method is significantly increased, mainly due
to relativistic extension of the method. We proposed a program for scattering phase shifts
calculations using the J-matrix method, both relativistic as well as non-relativistic versions. It
allows for applying any scattering potential vanishing faster than the Coulomb one and given
in analytical form. An example of scattering on the potential in shape of square-well has
been presented. In this case, results of numerical computations agree with analytical results.
Moreover, non-relativistic limit is properly achieved.

5 Conclusions

Authors thanks R. Szmytkowski for valuable suggestions concerning some numerical issues. All
computations were performed in the Tri-City Academic Computer Centre in Gdańsk TASK.
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Figure 3: Root-mean-square error, averaging 20 points backwards and 20 forwards.
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